O M C

TECH VIBRO WORKS

n m c

Independent expert in advanced software and electronic solutions for home and industry.

Specialization: condition monitoring, diagnostics, testing and control.

www.amctech.pl www.amcvibro.pl www.amcworks.pl

C M C H

02. AMC WORKS

electronics, mechanics, and automatics contract **assembly**

OMC WORKS

01. AMC TECH

electronics, mechanics and software **design** for industry

C M C V I B R O

03. AMC VIBRO

sales of machinery maintenance products and services (vibro, laser, ultrasound, oil, current, infrared)

food processing

aviation

automotive

chemical

consumer electronics

www.amctech.pl www.amcvibro.pl www.amcworks.pl military defence

marine

R&D cooperation

CLOSE COOPERATION

with technical universities from around the world (especially with AGH University of Science and Technology).

www.amcworks.pl

AMC team

>100 engineers

>20 years of experience

electronic, diagnostic, automation, and software engineers

technical and management certificates

www.amctech.pl www.amcvibro.pl www.amcworks.pl

C M C V I B R O

THE COSTS, RISKS AND RETURN OF INVESTMENT IN MACHINERY DIAGNOSTICS

www.amcvibro.com

What is machinery diagnostics?

Assessment of the technical condition of the machines without dissassambly, by examining the properties of their operation's processes or by examining the properties of the machine's products.

Determines the condition of the machine indirectly, without dismantling, based on the measurement of diagnostic signals and comparing them with the nominal values.

Is it worth it?

- > 23% of business owners confirm that they are suffering losses due to machine faults
- **90%** of those who monitor the condition of machines confirm that they reduced their lack of availability at least twice
- > 14% believe that thanks to diagnostics they avoided a critical failure

The most common causes of machinery failures

in 80% of Cases the failure is progressive

Machinery diagnostics – is it worth it?

MODERN DIAGNOSTICS MEANS:

up to

less breakdowns and downtime lower maintenance and maintenance costs longer lifetime of the monitored machines

AMC VIBRO Your Machinery Lifesaver

1960s-1970s:

Analog systems, paper tape recorders

- > overall values
- > no data recording

The 1980s and 1990s: Rapid development - growth of data processing, digital technologies, improvement of data quality

- > vibration velocity measurements ISO 10816 standard
- > portable analyzers
- > on-line systems very expensive nuclear power plants

The first decade of the 21st century:

increasing automation, lower installation costs, first wireless systems, remote diagnostics

The present – minimizing the involvement of service personnel, development of intelligent systems, miniaturization

- > Reactive
- > Preventive
- > Proactive

www.amcvibro.pl

AMC VIBRO Your Machinery Lifesaver

Reactive

In this model repairs are performed when the machine has already broken down in order to restore it to normal condition.

Preventive

Maintenance activities related to a given machine are carried out on a regular basis in order to reduce the probability of a failure. Repairs and replacements of elements are performed while they are still operational, preventing their unexpected failure.

Proactive

The aim of proactive diagnostics is, firstly: to *predict* when a failure may occur and what will be its cause, and secondly: to *prevent* it from happening by the means of maintenance activities. Monitoring of future failures allows you to plan repairs and downtimes before problems arise. Predictive diagnostics allows you to reduce the number of repairs and the costs of too frequent repairs and downtime.

76% 16% 8%

reactive

preventive

proactive

42% 34% 24%

reactive

preventive

proactive

How much should diagnostics cost?

How to Plan an Investment In Diagnostics

Investment planning is the most important time in any project. A properly planned project will allow for:

- > Adjusting the scope to expectations
- > Defining the budget
- > Proper scheduling
- > Appropriate preparation of the plant for implementation

Planning Investments In Diagnostics / Step I

On-site inspection

- > The Client presents the problem and their expectations for a solution
- > An inspection of the machine(s) is performed
- General features of the proposed solution are defined
- > Reference measurements are performed

Planning Investments In Diagnostics / Step II

Technical assessment

Based on the information gathered, the AMC team outlines the architecture of the system

- > Individual elements of the system are selected
- > The solution is proposed to the client, verification with expectations

Planning Investments In Diagnostics / Step III

Implementation

- > Installation dates are defined
- Criteria are established on the basis of which the project will be approved
- The plant is preparing for implementation (machine stoppage, line shutdown)
- > A customer representative must be present at the time of installation

Case studies

Lotos Energobaltic

Reciprocating compressor diagnostic system Remote, on-line diagnostic support

Lotos Energobaltic

- 2007 diagnostic system installed on Dresser-Rand reciprocating compressor
- > The system consists of 20 vibration channels mounted on:
 - > Cylinder
 - > Intermediate chamber
 - > Crankshaft bearings
 - > Drive motor bearings

Major Accident Prevention

- > The diagnostic system generated warning signal
- > An increase in the vibration level was detected, and more detailed analyses were performed
- > The compressor was stopped
- > Serious shaft fractures were detected
- > Until the machine was stopped, the fault had no effect on its operation
- > The damaged shaft was replaced

Costs comparison

- > Cost of the diagnostic system: approx. **EUR 100,000**
- > Repair costs with early failure detection :
 - Shaft replacement : 30,000 EUR (parts + services)
 - > Machine unavailability: 6 weeks
- Potential costs (no knowledge of the actual machine condition):
 - > New housing and shaft : 400,000 EUR
 - > Transport and installation: **200,000 EUR**
 - > Delivery: 6 months
 - > Machine unavailability: 8 months

Grupa Azoty ZA Puławy nitrogen fertilizer factory

- > Cooperation since 2008
- Over 20 compressors covered by vibration monitoring systemsPonad
- **Over 200 vibration channels**
- Successive covering of new machines with the vibration monitoring system
- > Over 40 failures detected

ZA Puławy: Failures deteced

- A significant increase in the vibration level was detected on one of the cylinders
- Additional analyzes were performed with a portable instrument
- A failure was detected related to the work of the pistons
- It was recommended to inspect the cylinder as soon as possible
- During the inspection, the diagnosis was confirmed the surface of the cylinder was damaged

ZA Puławy: Costs comparison

- The cost of the basic diagnostic system for one compressor
 EUR 80,000 (incl. implementation)
- Actual repair cost:
 EUR 8,000
- Estimated cost of compressor failure due to cylinder damage

EUR 300,000 - 500,000

C M C V I B R O

MONITORING VS DIAGNOSTICS

- how not to mistake apples for oranges?

www.amcvibro.com
What is monitoring? What is diagnostics?

Monitoring – observation, supervision, registration

Diagnostics

- distinguishing, recognizing, evaluating

Industrial health service

methods of machinery diagnostics

What is vibrodiagnostics?

A proven, effective method of assessing the technical condition of industrial machines on the basis of measurement and analysis of generated vibrations.

Industrial health service

methods of machinery diagnostics

Theory of vibrations

For rotating machines, **vibrations** always result from forces acting on the machine elements and **are an undesirable phenomenon.**

Machines speak to us through the generated

vibrations and it is a language worth learning!!!

Theory of vibrations

- Level 1 detection:
 the system tells you that something is wrong
- > Level 2 identification: which component is damaged?
- > Level 3 evaluation: how serious is the defect?
- Level 4 forecasting: how long can the component work safely?

AMC VIBRO offer

sensors wireless sensors

(((•)))

monitoring systems

portable systems

Ψ

protection

systems

Î

services

Data acquisition

Source

Sensor

> amplification

Conditioning

> filtering

> convertion

Piezoelectric sensor

Sensor mounting methods

Industrial sensors

> Accelerometers

- > General purpose industrial;
- ATEX certified for use in potentially explosive atmospheres;
- > High temperature;
- > Low and high frequency;
- > With 4-20mA current output;
- > Triaxial;
- > Relative vibrations (eddy current sensor)
- > Temperature
- > Pressure
- > Rotational speed
- > Others

Analog-to-digital conversion

Converting an analog signal to its digital representation

- > sampling
- > quantization
- > coding

Calculating diagnostic estimates

How to measure pulse?

How to measure pulse?

Method 1: Radial pulse

Step by step

- 1. Place your pointer and middle fingers on the inside of your opposite wrist just below the thumb.
- Don't use your thumb to check your pulse, as the artery in your thumb can make it harder to count accurately.
- 3. Once you can feel your pulse, count how many beats you feel in 15 seconds.
- 4. Multiply this number by 4 to get your heart rate. For instance, 20 beats in 15 seconds equals a heart rate of 80 beats per minute (bpm).

Normal rate

Re	- ing								
Men (beats per minute)									
Age	18 - 25	26 - 35	36 - 45	46 - 55	56 - 65	65 +			
Athlete	49 - 55	49 - 54	50 - 56	50 - 57	51 - 56	50 - 55			
Excellent	56 - 61	55 - 61	57 - 62	58 - 63	57 - 61	56 - 61			
Great	62 - 65	62 - 65	63 - 66	64 - 67	62 - 67	62 - 65			
Good	66 - 69	66 - 70	67 - 70	68 - 71	68 - 71	66 - 69			
Average	70 - 73	71 - 74	71 - 75	72 - 76	72 - 75	70 - 73			
Below Average	74 - 81	75 91	76 92	77 02	76 01	74 70			
	14-01	10-01	10-02	11-05	10-01	14-19			
Poor	82 +	82 +	83 +	84 +	82 +	80 +			
Poor	82 + Wom	82 + en (bea	83 + ts per n	84 +	82 ÷	65 +			
Poor Age	82 + Wom 18 - 25	82 + en (bea 26 - 35	83 + ts per n 36 - 45	46 - 55	56 - 65	65 +			
Poor Age Athlete Excellent	Wom 18 - 25 54 - 60 61 - 65	26 - 35 54 - 59 60 - 64	36 - 45 54 - 59 60 - 64	46 - 55 54 - 60 61 - 65	56 - 65 54 - 59 60 - 64	65 + 54 - 59 60 - 64			
Age Athlete Excellent Great	18 - 25 54 - 60 61 - 65 66 - 69	26 - 35 54 - 59 60 - 64 65 - 68	36 - 45 54 - 59 60 - 64 65 - 69	46 - 55 54 - 60 61 - 65 66 - 69	56 - 65 54 - 59 60 - 64 65 - 68	65 + 54 - 59 60 - 64 65 - 68			
Age Athlete Excellent Great Good	18 - 25 54 - 60 61 - 65 66 - 69 70 - 73	26 - 35 54 - 59 60 - 64 65 - 68 69 - 72	10 - 02 83 + ts per n 36 - 45 54 - 59 60 - 64 65 - 69 70 - 73	46 - 55 54 - 60 61 - 65 66 - 69 70 - 73	56 - 65 54 - 59 60 - 64 65 - 68 69 - 73	65 + 54 - 59 60 - 64 65 - 68 69 - 72			
Age Adge Athlete Excellent Great Good Average	18 - 25 54 - 60 61 - 65 66 - 69 70 - 73 74 - 78	26 - 35 54 - 59 60 - 64 65 - 68 69 - 72 73 - 76	10 - 02 83 + ts per n 36 - 45 54 - 59 60 - 64 65 - 69 70 - 73 74 - 78	46 - 55 54 - 60 61 - 65 66 - 69 70 - 73 74 - 77	76 - 61 82 + 56 - 65 54 - 59 60 - 64 65 - 68 69 - 73 74 - 77	65 + 54 - 59 60 - 64 65 - 68 69 - 72 73 - 76			
Age Athlete Excellent Great Good Average Below Average	18 - 25 54 - 60 61 - 65 66 - 69 70 - 73 74 - 78 79 - 84	26 - 35 54 - 59 60 - 64 65 - 68 69 - 72 73 - 76 77 - 82	10 - 02 83 + tts per n 36 - 45 54 - 59 60 - 64 65 - 69 70 - 73 74 - 78 79 - 84	46 - 55 54 - 60 61 - 65 66 - 69 70 - 73 74 - 77 78 - 83	76 - 61 82 + 56 - 65 54 - 59 60 - 64 65 - 68 69 - 73 74 - 77 78 - 83	65 + 54 - 59 60 - 64 65 - 68 69 - 72 73 - 76 77 - 84			

ISO 10816

Średniokwadratowa wartość prędkości drgań mm/s RMS	Klasa I	Klas a II	Klasa III	Klasa IV
0,28	Klasa I A B C D			
0,45		Δ		
0,71			А	۸
1,12	D		A Klasa III Klasa IV A A A A A B B B B B B B B B B B C C C C	
1,8	Б	D		
2,8	C	Klasa I Klasa II Klasa II Klasa IV A A A A B B A A C B B B C C B B D D D D		
4,5	C	C	В	D
7,1		L L	C	D
11,2			C	C
18	D			C
28			D	
45				

Entry-level portable systems

Benstone vPod Pro

Sensor:

> Dual-use
(vibrations+temperature)

Measurement:

- > Range: ± 50 g, -40 ° +115 ° C
- > Sensitivity: 100mV/g
- > Shock resistance: 5000 g
- > Frequency range: 1-8 kHz (± 1 dB), 0,3-10 kHz (± 3 dB)

Options

- > Route
- > Spectrum analysis

www.amcvibro.pl

Calculated estimates:

- > RMS
- → Peak (0 P)
- → Peak-to-peak (P P)
- > Bearing condition

Other features:

- Bluetooth connectivity for headphones
- > WiFi
- > Camera

Portable systems vs stationary systems

Basic stationary systems

AVM 1000 SERIES

Single-channel modules for continuous monitoring and preliminary diagnostics of rotating machines with constant and variable rotational speed. An affordable option for customers who want to avoid major breakdowns

- > One vibration measurement channel
- 2 relay outputs, 4..20 mA analog output, raw sensor signal output
- > Vibration measurement according to the ISO standard
- > LED display
- > 4 versions for specific applications

Values vs. trends

Values vs. trends

Values vs. trends

Historical data recording trend analysis

Time trends are graphs showing changes in monitored quantities / signals over time.

- > Development of a monitored fault
- > Percentage change from the selected level
- > Correlations of signals over time
- > Identification of long-term process changes

Basic monitoring systems

AVM 2000 SERIES

Dual-channel modules for continuous monitoring and diagnostics of machines, including the detection of damage such as imbalance, misalignment or bearing damage.

- > Two channels for vibration measurement + rotational speed measurement
- > 5 relay outputs, 2 analog outputs 4..20mA, 2 raw signal outputs from sensors,
- > Modbus
- > Detection and identification of faults
- > Data recording on SD card
- > LED display
- > 4 versions

Operational states

www.amcvibro.pl

vibrodiagnostics as a "description" of the recorded vibration signal. Process signal values are used to classify vibration signals in the context of machine operating parameters, the so-called "Operating states" of the machine.

Process signals are treated in

Advanced stationary systems

AVM 4000

- > True Data ValidatorTM
- > Advanced diagnostic analyses
- > Modular structure based on funtional cards
- > Historical data recording
- > 24bit resolution, up 100kHz sampling
- > SCADA integration
- > Access from any place of the globe (Ethernet)
- \rightarrow AVM 4000EU \rightarrow AVM 4000+U
- > AVM 4000+V > AVM 4000+P

Software

VIBnavigator is the user interface of the AVM 4000 platform.

Funtions:

- > System configuration and administration
- > Preview of current and historical data
- > Event monitoring

Wireless system

An answer to the limitations of both portable and stationary systems:

- > No cables
- > Monitoring in hard-to-reach places
- > Monitoring of distributed systems
- > Easy to assemble
- > Low system maintenance costs

AV SENSOR 2000R

Key information

- > 2 axis
- > 8 calculated estimates
- > 8 customizable narrowbands
- > Temperature measurement
- > Wireless data transmission
- > Range up to 150 m in industrial environment
- > Up to 6 years without battery replacement
- > Compact housing

AVM GATEWAY

Features:

- > Manages the network of up to 32 AVS2000R sensors
- > Ethernet communication
- > Built-in web server
- > Network connection monitoring
- > Data collection, saving on SD card
- > Responses to warning and alarm signals
- > Sensor battery monitoring

AV SENSOR 2000R software

Status (03.07.2018 - 16:18:05)

Battery Life [%]: 100 Temp [oC]: 0.0

Voltage supply [mV]: 6802 Estimates to send [-]: 0

Free memory [-]: 8095

Sensor configuration is up to date

sell sectors service well were to were over any

 Channel 1 (channel X)
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

Channel 2 O O O O O O

Current Values

Channel time: 03.07.2018 - 16:18:05

Value	Channel 1 (channel 1)	Channel 2 (channel 2)
accZP [m/s^2]	74.29	12.10
accRMS [m/s^2]	4.98	4.75
accKURT [-]	14.94	1.98
velZP [mm/s]	140.17	139.09
velRMS [mm/s]	60.57	59.43
ISO-velRMS [mm/s]	33.50	32.85
envPP [m/s^2]	1.05	0.93
envRMS [m/s^2]	1.39	1.43

Value	Name (channel 1)	Channel 1 (channel 1)	Unit	Name (channel 2)	Channel 2 (channel 2)	Unit
Band 1	CH1 Band 1	4.60	m/s2 RMS	CH2 Band 1	4.56	m/s2 RMS
Band 2	CH1 Band 2	0.39	m/s2 RMS	CH2 Band 2	0.50	m/s2 RMS
Band 3	CH1 Band 3	0.51	m/s2 RM5	CH2 Band 3	0.35	m/s2 RMS
Band 4	CH1 Band 4	0.25	m/s2 RM5	CH2 Band 4	0.33	m/s2 RMS
Band 5	CH1 Band 5	0.40	m/s2 RM5	CH2 Band 5	0.26	m/s2 RMS
Band 6	CH1 Band 6	0.58	m/s2 RMS	CH2 Band 6	0.39	m/s2 RMS
Band 7	CH1 Band 7	0.71	m/s2 RM5	CH2 Band 7	0.42	m/s2 RMS
Band 8	CH1 Band 8	0.57	m/s2 RMS	CH2 Band 8	0.59	m/s2 RM5

AV SENSOR 2000R software

(ISO-velRMS [mm/s]	velRMS [mm/s]	velZP [mm/s]	accKURT	accRMS [m/s^2]	accZP [m/s^2]	Time [hh:mm:ss]	Date [dd.mm.yyyy]
	0.67	0.73	2.28	0.02	9.23	40.33	18:45:22	03.07.2018
	0.83	0.88	2.74	-0.12	8.82	37.90	19:00:22	03.07.2018
	0.89	0.95	2.84	-0.14	8.68	30.98	19:15:22	03.07.2018
	1.39	1.54	4.43	-0.04	8.55	27.82	19:30:22	03.07.2018
	0.73	0.80	2.32	-0.37	11.79	42.52	19:45:2Z	03.07.2018
	0.55	0.74	2.61	-0.89	16.82	45.48	20:00:22	03.07.2018

www.amcvibro.pl

Level configuration

	CH	IX	CH	IY	
	Warning Threshold	Alarm Threshold	Warning Threshold	Alarm Threshold	
accZP	0,8	1,2	0,8	1,2	[m/s ²]
accRMS	0,8	1,2	0,8	1,2	[m/s ²]
accKURT	3,8	4,2	3,8	4,2	[-]
velZP	0,8	1,2	8,0	1,2	[mm/s]
velRMS	0,8	1,2	8,0	1,2	[mm/s]
ISO-velRMS	0,8	1,2	0,8	1,2	[mm/s]
envPP	0,8	1,2	0,8	1,2	[m/s ²]
envRMS	0,8	1,2	0,8	1,2	[m/s ²]
Band1	0,8	1,2	0,8	1,2	[m/s ² RMS
Band2	0,8	1,2	0,8	1,2	[m/s ² RMS
Band3	0,8	1,2	0,8	1,2	[m/s ² RMS
Band4	0,8	1,2	0,8	1,2	[m/s ² RMS
Band5	0,8	1,2	8,0	1,2	[m/s ² RMS
Band6	0,8	1,2	0,8	1,2	[m/s ² RMS
Band7	0,8	1,2	0,8	1,2	[m/s ² RMS
Band8	0,8	1,2	0,8	1,2	[m/s ² RMS

Narrowband analyses parameters

СНХ

CHY

	From	То		Name	Туре		From	То		Name	Туре	
Band1	0	100	[Hz]	CH1 Band 1	Acceleration	*	0	100	[Hz]	CH2 Band 1	Acceleration	٠
Band2	100	200	[Hz]	CH1 Band 2	Acceleration	-	100	200	[Hz]	CH2 Band 2	Acceleration	٠
Band 3	200	400	[Hz]	CH1 Band 3	Acceleration	*	200	400	[Hz]	CH2 Band 3	Acceleration	
Band4	400	600	[Hz]	CH1 Band 4	Acceleration	*	400	600	[Hz]	CH2 Band 4	Acceleration	,
Band5	600	1000	[Hz]	CH1 Band 5	Acceleration	-	600	1000	[Hz]	CH2 Band 5	Acceleration	2
Band6	1000	2500	[Hz]	CH1 Band 6	Acceleration	÷	1000	2500	[Hz]	CH2 Band 6	Acceleration	,
Band7	2500	5000	[Hz]	CH1 Band 7	Acceleration	*	2500	5000	[Hz]	CH2 Band 7	Acceleration	
3and8	5000	10000	[Hz]	CH1 Band 8	Acceleration	~	5000	10000	[Hz]	CH2 Band 8	Acceleration	,
AV SENSOR 2000R system integration

Ethernet (web server) OPC UA Modbus

AVS 2000R AVM GATEWAY

www.amcvibro.pl

AV SENSOR 2000R Integracja systemu

SCADA / DCS

www.amcvibro.pl

Contact us

AMC VIBRO SP. Z O.O.

T: +48 (12) 362 97 60 S: +48 (12) 362 97 63

info@amcvibro.pl www.amcvibro.pl

www.amcvibro.pl

