

Transition from stationary CMS to Industry 4.0

Dr hab. inż Adam Jabłoński, prof. AGH AMC vibro, Krakow

Agenda

- Motivation
- Types of systems
- Vibration essentials
- Thresholds settings
- Order analysis
- Handling large data
- New concept of data analysis automatization

Motivation

The main practical feature to be achieved withing the transformation is the **scalability**

- Cost of sensors
- Interfaces/protocols
- Data integration
- Analysis automatization

"It just takes the digital clock of the microvawe oven to illustrate how simple things are hard to use, if not necessary"

Types of systems: hardware

Stationary systms

Wiereless solutions

Types of systems: data Hardware \rightarrow data characteristics

Types of systems: software

If possible, characteristic components are defined for individual machine parts – they generate **trend plots**

Kinetostatic models are used to calcualte characteristic orders

Individual characteristic orders generate trends

	Order	Minim	Maximum	Bandw
T				
	OUT2.3x	11,8200	12,1800	3,0000
	Planetary.GMFx1	23,6400	24,3600	3,0000
	Planetary.GMFx2	47,2800	48,7200	3,0000
	Planetary.GMFx3	70,9200	73,0800	3,0000
	Planetary.GMFx4	94,5600	97,4400	3,0000
	Planetary.HTF_PlanetRingx1	0,9850	1,0150	3,0000
	Planetary.HTF_PlanetRingx2	1,9700	2,0300	3,0000
	Planetary.HTF_PlanetRingx3	2,9550	3,0450	3,0000
	Planetary.HTF_PlanetRingx4	3,9400	4,0600	3,0000
	Planetary.HTF_PlanetSunx1	2,9550	3,0450	3,0000
	Planetary.HTF_PlanetSunx2	5,9100	6,0900	3,0000
	Planetary.HTF_PlanetSunx3	8,8650	9,1350	3,0000
	Planetary.HTF_PlanetSunx4	11,8200	12,1800	3,0000
	Planetary.PlanetSpeedx1	2,9550	3,0450	3,0000
	Planetary.PlanetSpeedx2	5,9100	6,0900	3,0000

Gearboxes / drive trains could generate hundereds of trends

A close-up of the planthopper's gears. PHOTOGRAPH BY MALCOLM BURROW

Design of gearbox influences vibration signature

Bearings are monitored using **envelope** techniques

Comparison of healthy vs. faulty bering

Order analysis

Rys. 2 Sygnał ze stałą ilością próbek w jednostce czasu

Order analysis minimized smearing effects

Threshold settings

Warning

czas

54:30

Trend chart

Handling large data

PATH 1: Statistical data analysis

Acceleration: PP, RMS, kurtosis Envelope: Env_PP, Env_RMS Velocity: VRMS

PATH 2: Narrowband spectral analysis

Acceleration: SlowShaft x1, sumGMF(x1,x2x3)
Envelope: BPFIx1
Velocity: SlowShaft x1

Large

data

20 GB

PATH 3: Two-dimensional comparison

	Order spectrum:	Shafts, Gearbox es, etc.	
≻	PSD:	Structural vibrations	1
	Envelope spectrum:	Characteristic frequencies	
	Envelope order spectrum:	Characteristic orders	

Frequency

PATH 4: Three-dimensional visualization

	Order spectrum:	Shafts, Gearbox es, etc.
≻	PSD:	Structural vibrations
	Envelope spectrum:	Characteristic frequencies
	Envelope order spectrum:	Characteristic orders

Examples of array representations

150 00

9 10 Signal No

0.2

- Unknown optimum resolution
- Unknown optimum spectrum type

New concept

New concept

+ velocity

+ power

Advanced ND hidden

The metod accepts a large number of raw vibration signals and points (sorted) list of parametrs for display of trend (trend data available)

¹ chanel_Name, PATH_Name, unit, method_Name, amp_Name, bin_Start, bin_Stop, resolution, PA, CA, is_Short_Term, score_Name, classification_Rule, bin_Method, value

² channel 1, Spectrum, Hz, RR, Regular [g], 15.5, 18.5, 1, 1, 0, NO, a, hist_Break, fd, 0.00572515746314191

³ channel 1, Spectrum, Hz, RR, Regular[g], 15.5, 18.5, 1, 1, 0, NO, a-score, hist_Break, fd, 0.174906556355837

⁴ channel 1,Spectrum,Hz,RR,Regular[g],5074.5,5075.5,1,1,0,NO,a-score,hist_Break,fd,0.0164155904959713

⁵ channel 1, Spectrum, Hz, RR, Regular[g], 15.5, 18.5, 1, 1, 0, NO, pHigh/pLow, hist_Break, fd, 3.67004785277712

⁶ channel 1,Spectrum,Hz,RR,Regular[g],15.5,18.5,1,1,0,NO,pHigh-pLow,hist_Break,fd,0.0403156014910759

Summary

Because the program, which implements new concept iterates over machines, channels, singals, resolutions, ND methods, and statistical scores, it enables CMS scalability, even for different data sources (different systems and sensors).