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End-of-line testing and monitoring in fleets
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End of line testing
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Machine learning stages
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Training

Inference
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Understanding Dataset Shift and Potential Remedies A Vector Institute Industry Collaborative Project
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Model memorizes training data and does 
not generalize to the testing data

The joint distributions of the training and testing datasets 
differ and the model is no longer valid on the new data



Examples of dataset shift

The statistical properties of the data that was used to 

train a machine learning model can change over time. 

This can cause the model to become less accurate or 

perform differently than it was designed to. 

Simulated data is used to train the models. However, the 

models will be applied on real life conditions.
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Simulation condition Real life condition
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Geometric measures calculate the distance between two vectors 
in a metric space. 

Information-theoretic measures captures the distance between 
probability distributions.

Higher-Order measures consider matching higher order moments 
of random variables or divergence in a projected space. 
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Proxy A distance

Not separable Partially separable Fully separable

• Domain discrepancy is calculated using a domain classifier
• PAD = 2*(2a-1) where a is the accuracy of the classifier on the test set



Dataset shift simulation

Class distribution shift

• Imbalanced data is the shift caused due to a 

difference in the proportion of different fault classes 

in the source and target datasets

Mixture component shift

• If the global distribution is made up of data from 

different sub-populations with varying 

characteristics, the differences in the proportions of 

these sub-populations in the two datasets sets leads 

to a dataset shift called the mixture component shift 
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Simulating both shifts together
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Overcoming dataset shift

22

• Collect and label new dataset

• Build model on new dataset



Overcoming dataset shift
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• Collect and label new dataset – Collection of real experimental data is resource intensive

• Build model on new dataset – Building new models for each change can be computationally expensive



How to deal with dataset shift – Transfer learning

• Transfer learning is the idea of re-using knowledge learned in one situation for another situation

• A transfer is done from a source domain and task to a target domain and task

• The domain consists of the input feature space X and the marginal probability distribution p(X)

• The task is the predictive function learned from training data f

Hadrien Bertrand. Hyper-parameter optimization in deep learning and transfer learning : 
applications to medical imaging.
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Booming noise classification

Input profiles 1D CNN
Booming/ 

Non-booming
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Scarcity of samples

Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76.
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Fine tuning

• In this method, a neural network is first trained on the source domain.

• The lower layers which capture more generic features are frozen, while the end layers are further trained on the 

target domain

• As a last step the entire model can be further trained on the target dataset

https://livebook.manning.com/book/deep-learning-with-javascript/chapter-5/v-6/114

Frozen 
layers

Trainable 
layers

Trainable layers
Initialized with source domain 

weights
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Feature extraction

• Similar to fine-tuning, a neural network is first 

trained on the source domain.

• The output of the lower layers is then used as 

input to a completely different model which is 

trained on the target domain from scratch.

• This new model need not be a neural network. 

https://www.oreilly.com/library/view/hands-on-transfer-learning/9781788831307/d94586c6-1c46-
4794-aded-22442a4f81d8.xhtml
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Results

Small target dataset

Test accuracy: 78.80 %

Large source dataset

+ Small target dataset

Test accuracy: 89.28 %

Large target dataset

Test accuracy: 92.78 %
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Results
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Data scarcity

• Scarcity of samples

• Access to few sound samples from the target 

domain

• Target domain is labelled

• Scarcity of labels

• Access to sufficient sound samples from the target 

domain

• Target domain is unlabelled

Dataset
Input features 

used
Training + 
Validation

Testing Labelled

Source 2nd order profile 1000 + 100 500 Yes

Target 2nd order profile 100 + 100 500 Yes

Dataset
Input features 

used
Training + 
Validation

Testing Labelled

Source
2nd order, 
loudness, 

sharpness profiles
1000 + 250 1000 Yes

Target
2nd order, 
loudness, 

sharpness profiles
1000 + 250 1000 No
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Scarcity of labels

Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76.
https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d
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Domain Adversarial Neural Network (DANN)

• Feature extractor extracts domain invariant and discriminative feature space

• In the forward propagation, the features are sent to:

1. A binary classifier Gd to classify whether they come from the source or the target domain with domain label d.

2. For the source domain data, the features are simultaneously sent to the label classifier Gy to predict class label y

• DANN seeks to minimize the source classification loss for the discriminativeness while maximizing the domain 

classification loss for the domain-invariance. 

• The Gradient Reversal Layer (GRL) serves for an identity transformation in the forward propagation, while the 

downstream gradients will change the sign passing through the GRL during backpropagation. 

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." 
The journal of machine learning research 17.1 (2016): 2096-2030.
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Domain Adversarial Neural Network Results

Source Target

Without trend removal 
Percentage accuracy (Mean ± standard 

deviation)

After trend removal
Percentage accuracy (Mean ± standard 

deviation)

Without 
DANN

With DANN
Fully labelled 

dataset
Without 

DANN
With DANN

Fully labelled 
dataset

Mondeo
Focus

78.9 ± 2.7 83.1 ± 1.5
93.8 ± 0.1

91.4 ± 0.8 91.5 ± 0.3
93.8 ± 0.7 

Vectra 83.5 ± 3.6 85.2 ± 2.5 86.1 ± 1.1 88.0 ± 1.1

Focus
Mondeo

71.9 ± 14.3 86.6 ± 0.6
93.2 ± 0.8

89.9 ± 1.3 91.5 ± 0.6
94.0 ± 0.7

Vectra 70.9 ± 25.6 86.6 ± 0.8 88.9 ± 1.2 90.6 ± 0.3

Focus
Vectra

27.1 ± 3.9 82.3 ± 2.8
92.8 ± 0.4

85.3 ± 1.0 88.1 ± 1.2
93.8 ± 0.7

Mondeo 35.9 ± 10.3 83.4 ± 1.0 87.1 ± 0.2 88.5 ± 0.5
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Dealing with dataset shift

Is there a 
drift in the 

data?
Does it 
affect 

accuracy?

Continue 
to use 
model

Can we 
train a new 

model?

Make new 
model 

Transfer 
learning

Start

End

No Yes

Is transfer -
ability 
good?

No Yes

No Yes

NoYes
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Future work

• Assessing consequences of shift

• Estimation of transferability
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