Dataset shift and its impact on machine learning-based fleet monitoring

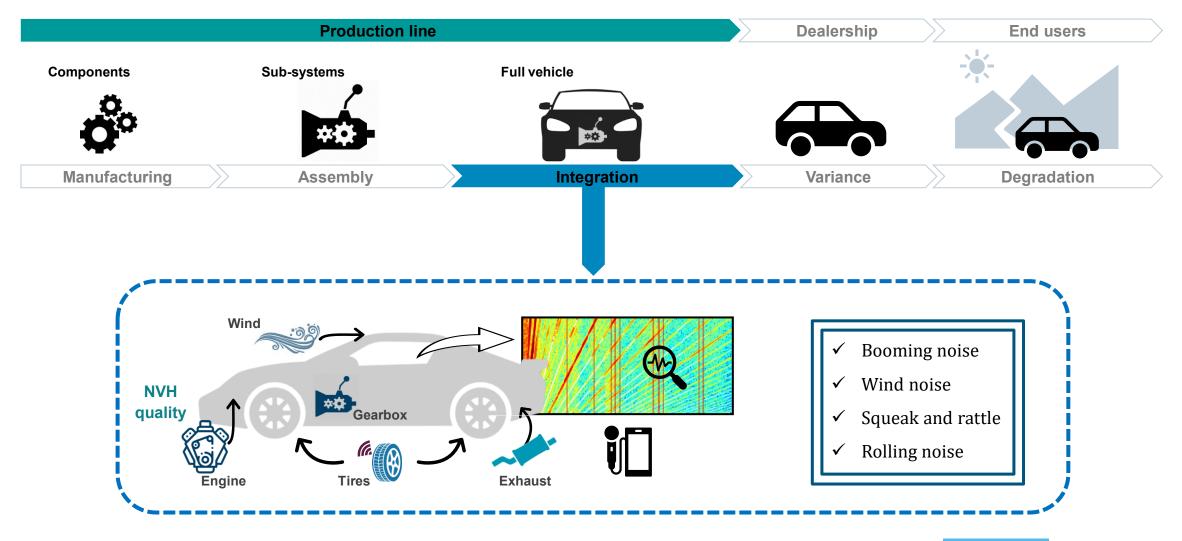
Deepti Kunte

Bram Cornelis Konstantinos Gryllias

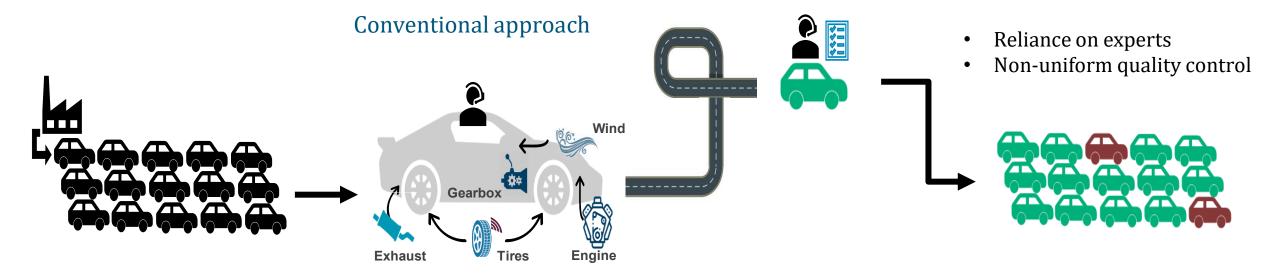
Contents

- Machine learning in end-of-line testing
 - Machine learning stages and failure modes
- Dataset shift detection
 - Case study: Proxy-A-distance
- Transfer learning
- Case study: Booming noise detection

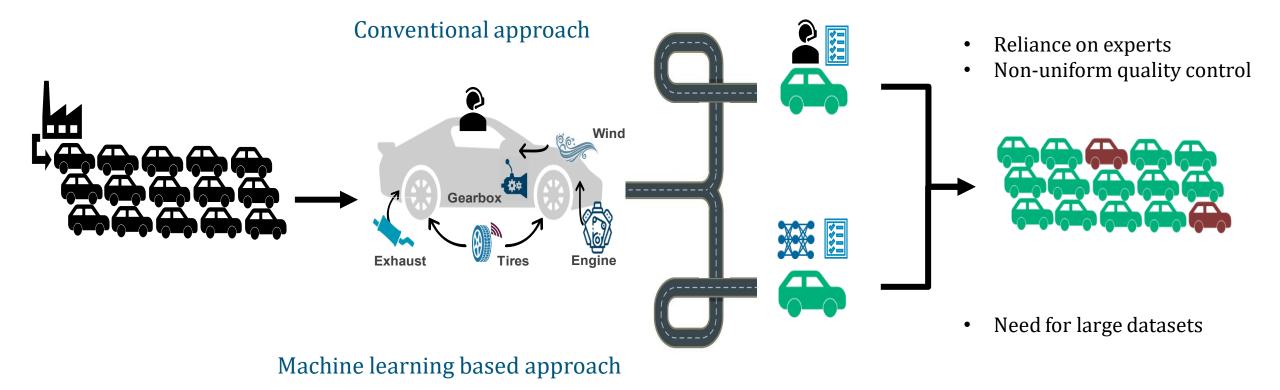
End-of-line testing and monitoring in fleets

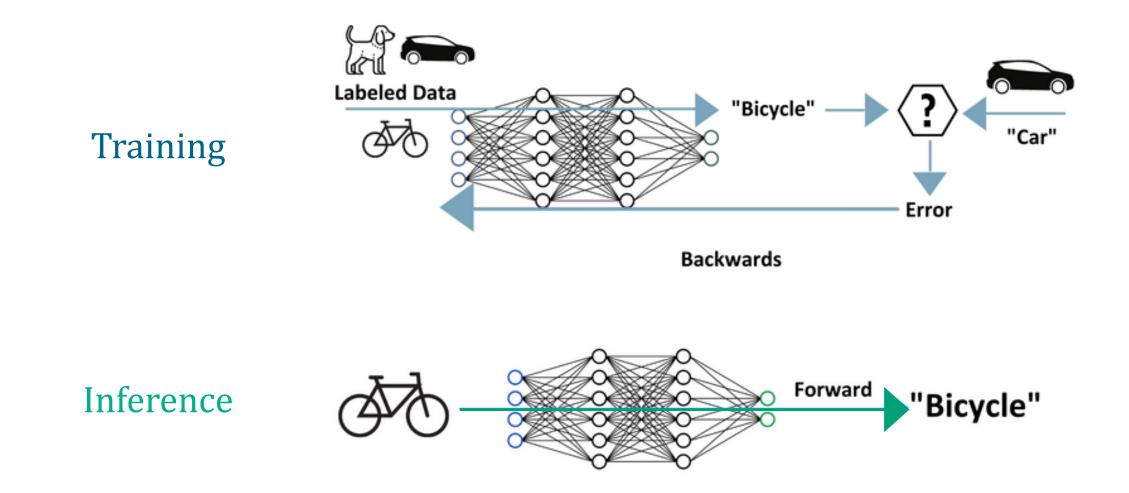


End of line testing

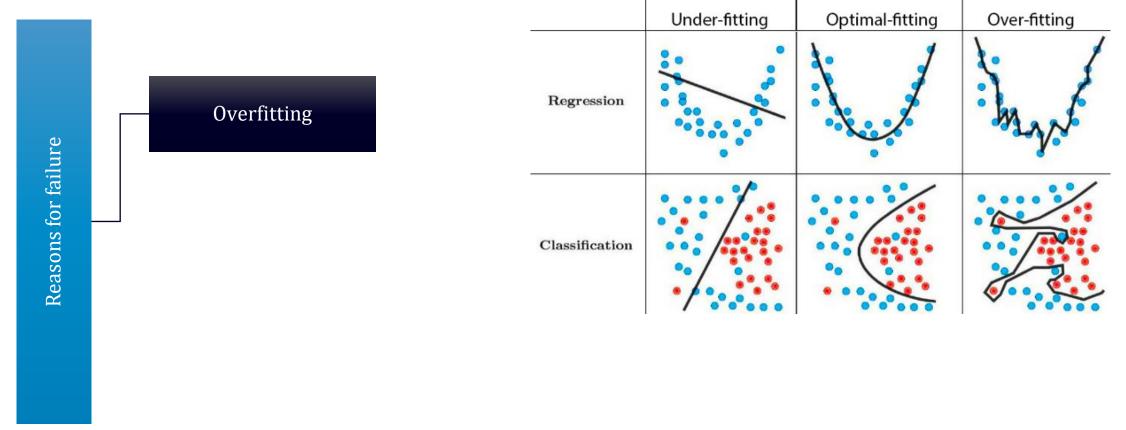


End of line testing



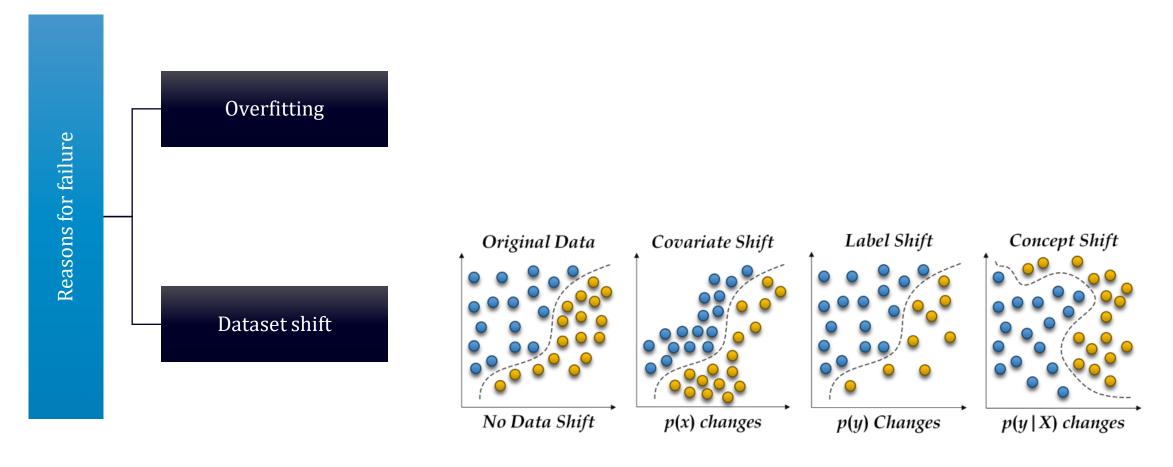


Model works well during training but fails on deployment.

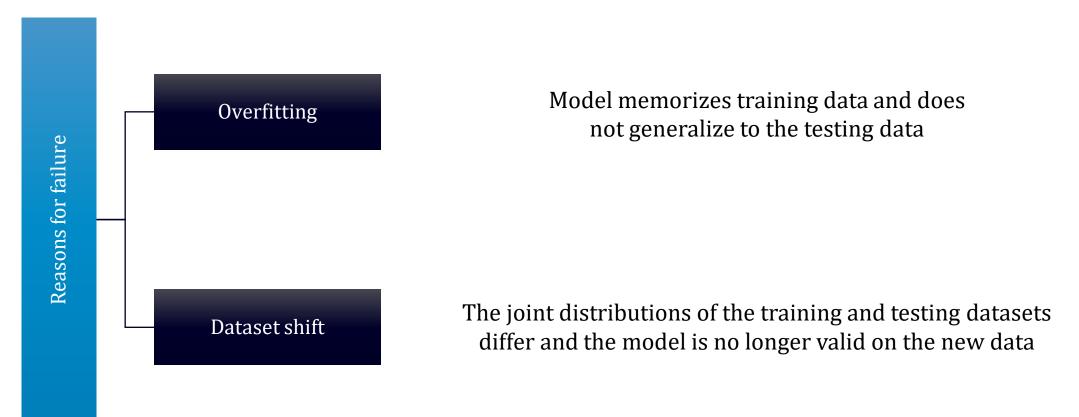


8

Model works well during training but fails on deployment.

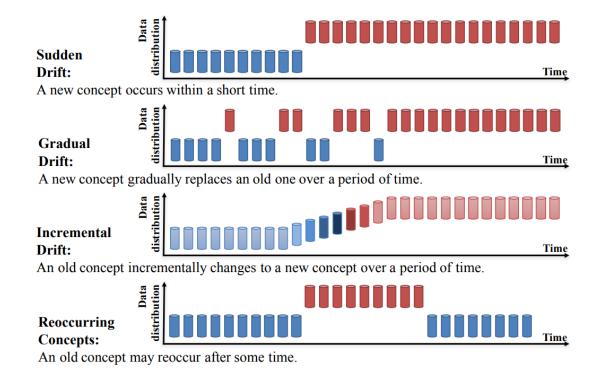


Model works well during training but fails on deployment.

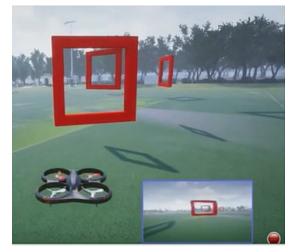


Examples of dataset shift

The statistical properties of the data that was used to train a machine learning model can change over time. This can cause the model to become less accurate or perform differently than it was designed to.

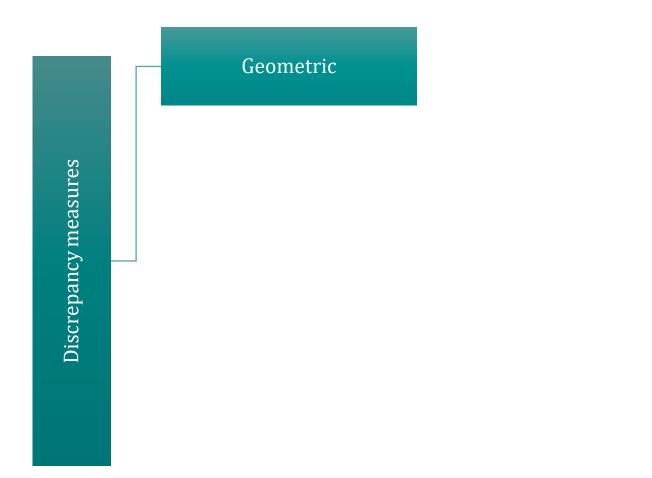


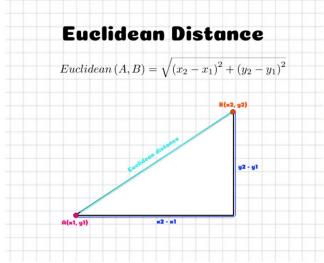
Simulated data is used to train the models. However, the models will be applied on real life conditions.



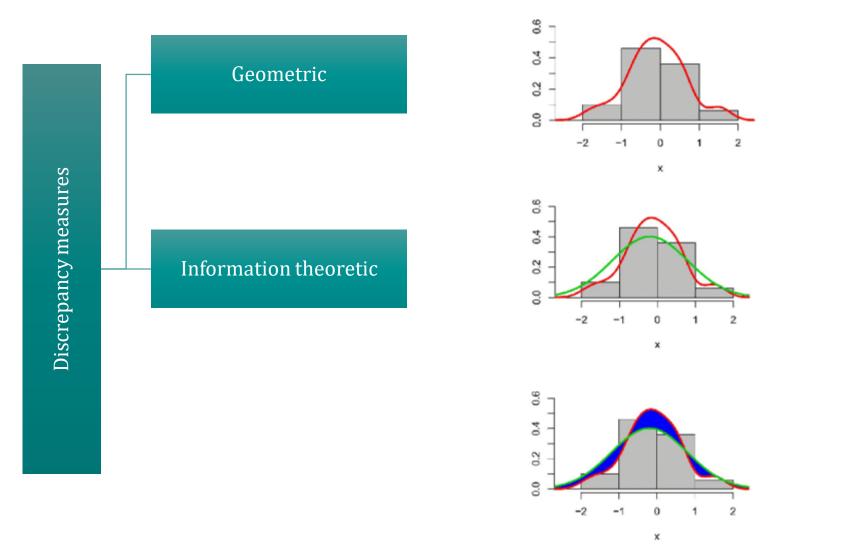
Simulation condition

Real life condition



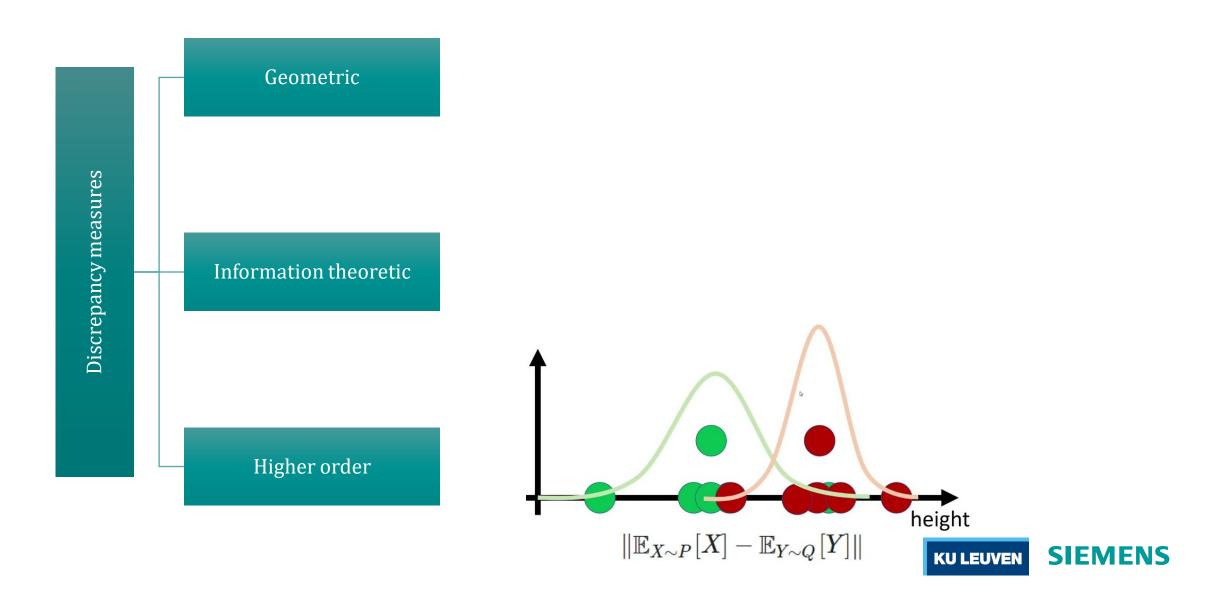


Dataset shift detection and quantification

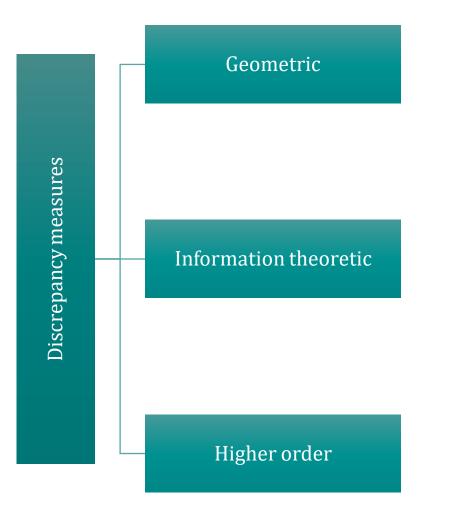


12 Mis-Specification Analysis of Wiener Degradation Models by Using f-Divergence with Outliers -Fode Zhang, Hon Keung Tony Ng, Yimin Shi

Dataset shift detection and quantification



Dataset shift detection and quantification



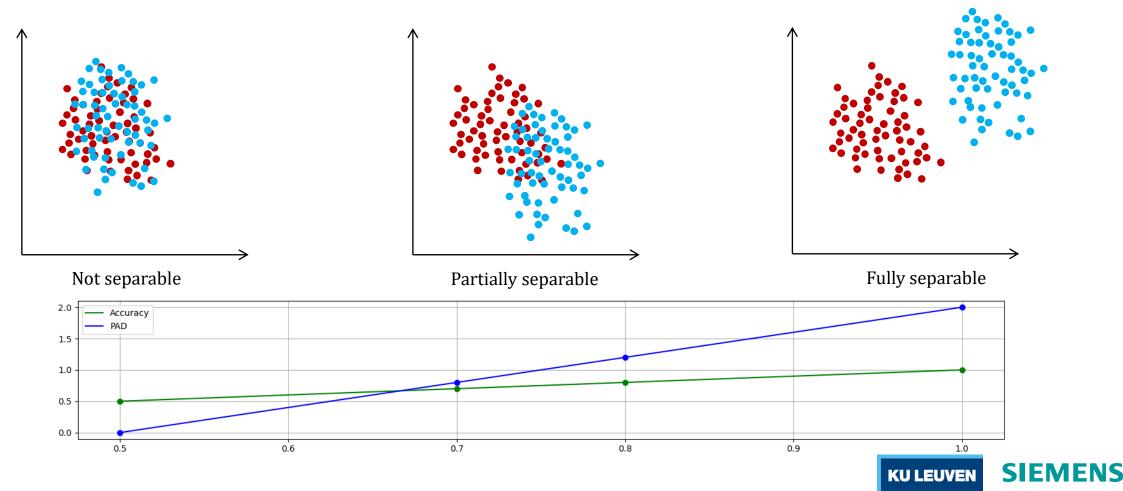
Geometric measures calculate the distance between two vectors in a metric space.

Information-theoretic measures captures the distance between probability distributions.

Higher-Order measures consider matching higher order moments of random variables or divergence in a projected space.

Proxy A distance

- Domain discrepancy is calculated using a domain classifier
- $PAD = 2^{*}(2a-1)$ where a is the accuracy of the classifier on the test set



Dataset shift simulation

Class distribution shift

• Imbalanced data is the shift caused due to a difference in the proportion of different fault classes in the source and target datasets

Dataset 1	Dataset 2		
% Fault	% Fault		
	0		
	10		
	20 30 40 50		
50			
	70		
	80		
	90		
	100		

Mixture component shift

 If the global distribution is made up of data from different sub-populations with varying characteristics, the differences in the proportions of these sub-populations in the two datasets sets leads to a dataset shift called the mixture component shift

Dataset 1	Dataset 2		
% Primary	% Contaminant	% Primary	
car	car car		
	100	0	
	90	10	
100	80	20	
	70	30	
	60	40	
	50	50	
	40	60	
	30	70	
	20	80	
	10	90	
	0	100	

Simulating both shifts together



Overcoming dataset shift

- Collect and label new dataset
- Build model on new dataset

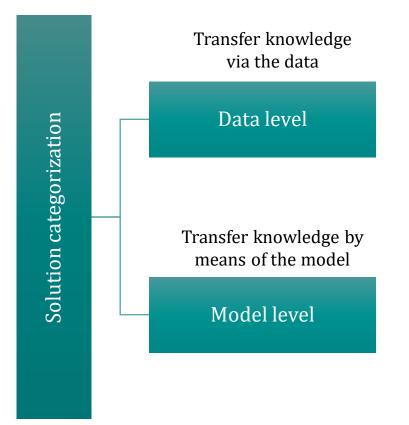
Overcoming dataset shift

- Collect and label new dataset Collection of real experimental data is resource intensive
- Build model on new dataset Building new models for each change can be computationally expensive

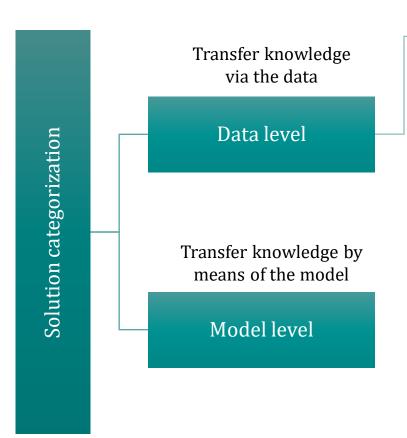
How to deal with dataset shift – Transfer learning

- Transfer learning is the idea of re-using knowledge learned in one situation for another situation
- A transfer is done **from a source** domain and task **to a target** domain and task
- The **domain** consists of the input feature space X and the marginal probability distribution p(X)
- The **task** is the predictive function learned from training data f

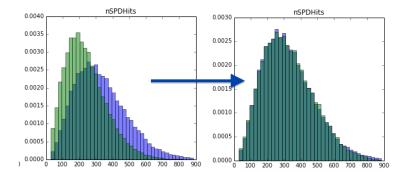
25



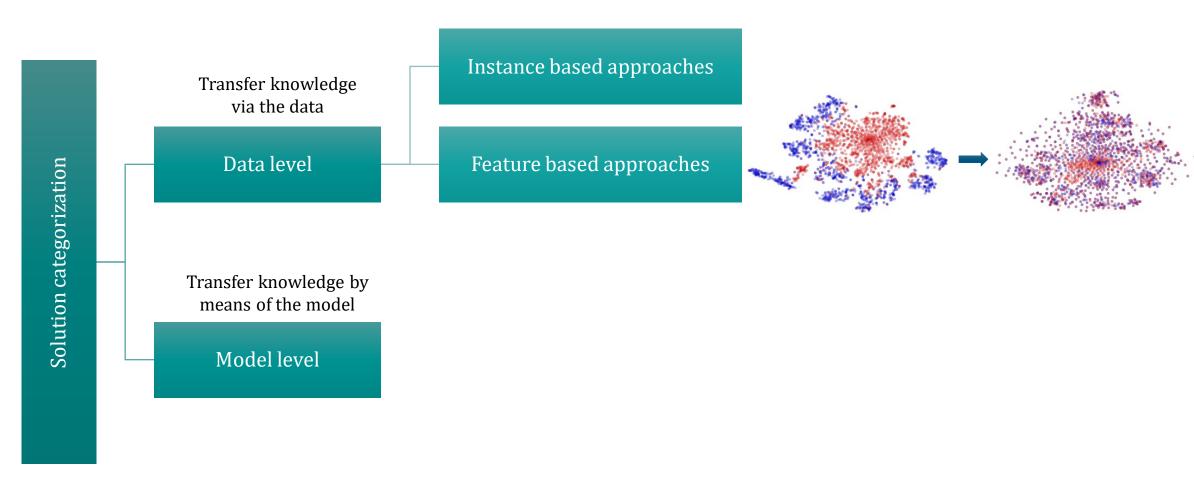
Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d



Instance based approaches

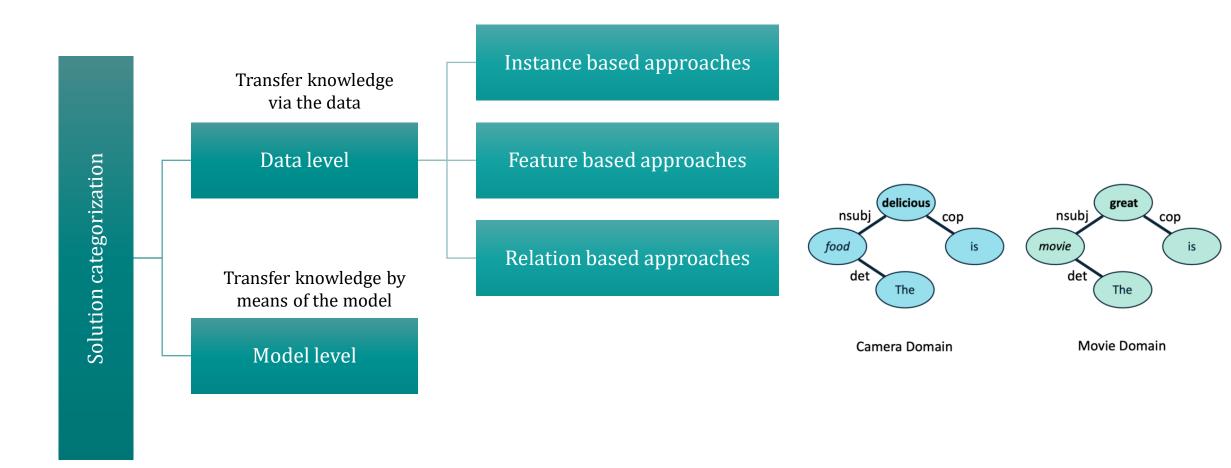


Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76. <u>https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d</u> <u>https://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html</u>

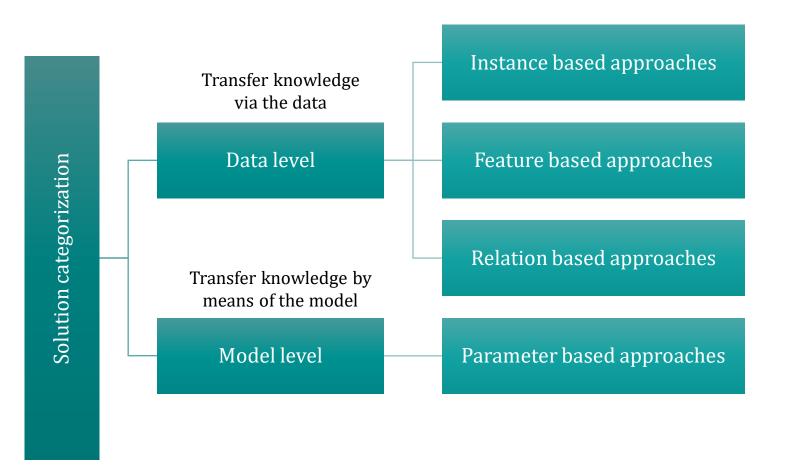


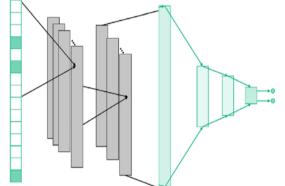
Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d

Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research 17.1 (2016): 2096-2030.

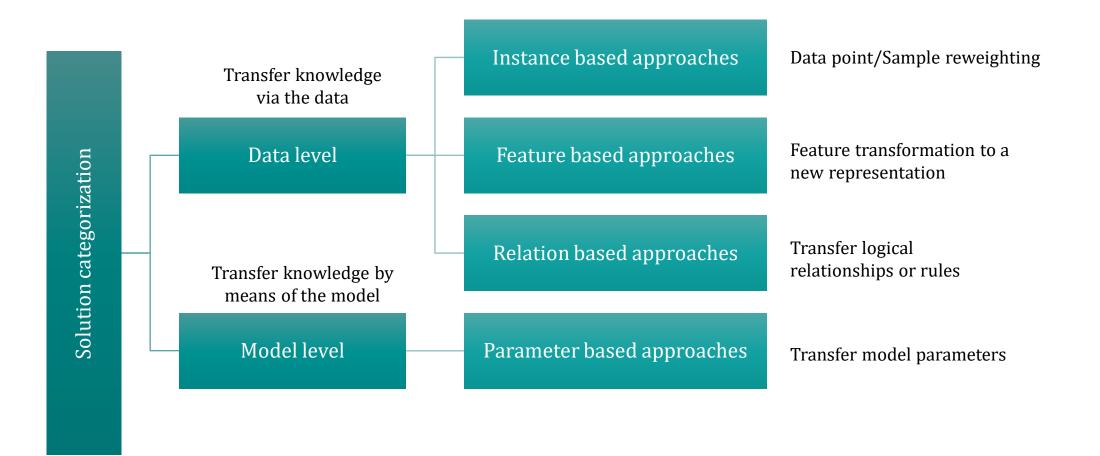


Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76.
https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d



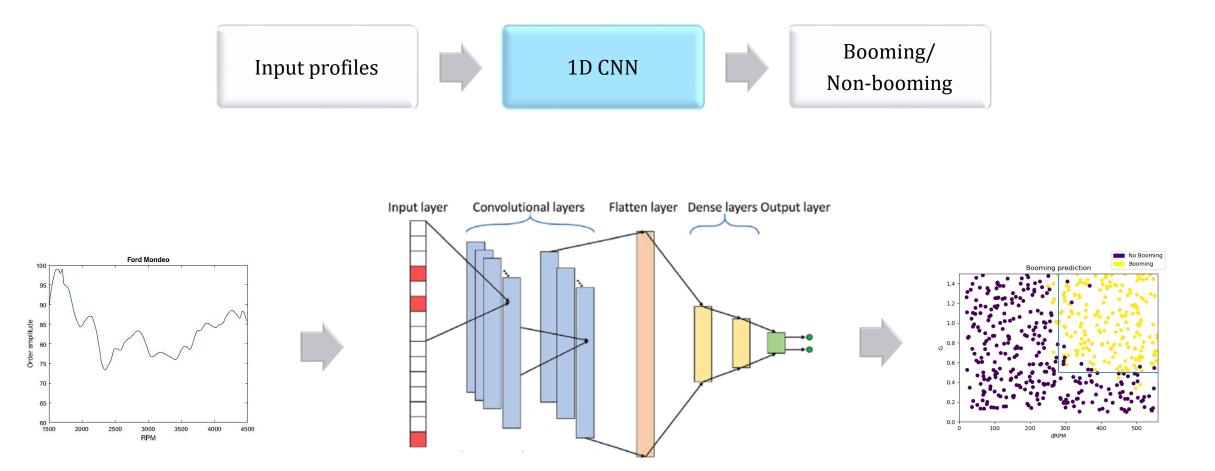


Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76.
https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d



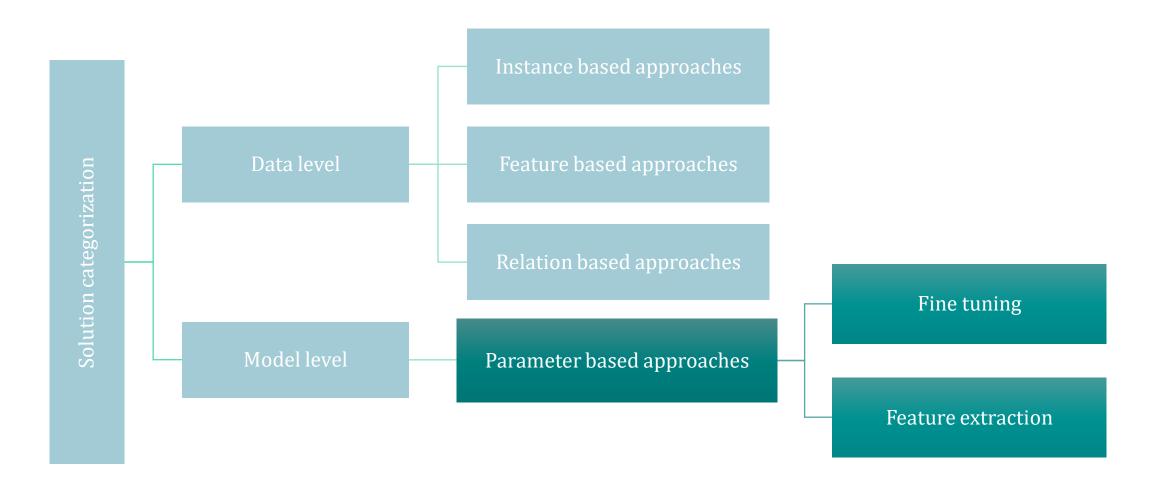
Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76.
https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d

Booming noise classification



Scarcity of samples

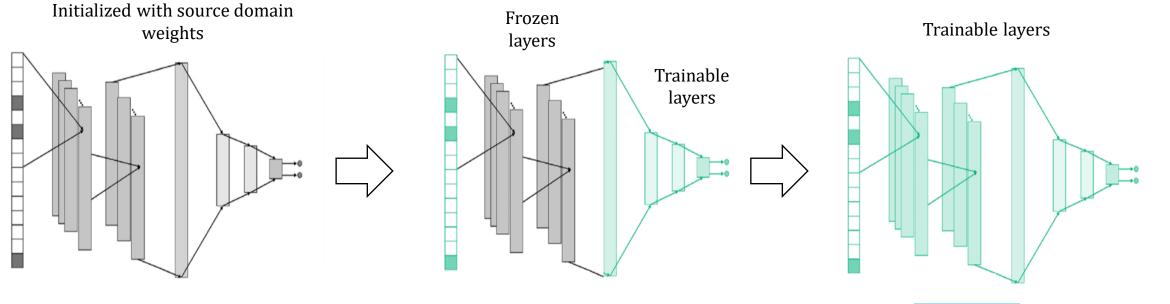
33



Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d

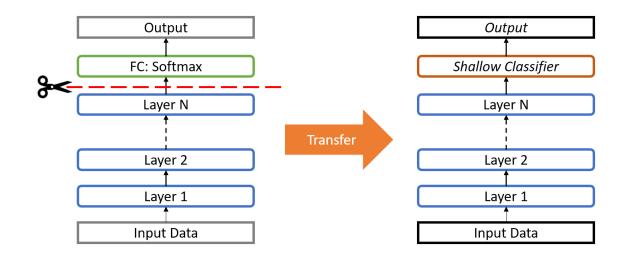
Fine tuning

- In this method, a neural network is first trained on the source domain.
- The lower layers which capture more generic features are frozen, while the end layers are further trained on the target domain
- As a last step the entire model can be further trained on the target dataset



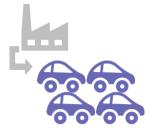
Feature extraction

- Similar to fine-tuning, a neural network is first trained on the source domain.
- The output of the lower layers is then used as input to a completely different model which is trained on the target domain from scratch.
- This new model need not be a neural network.



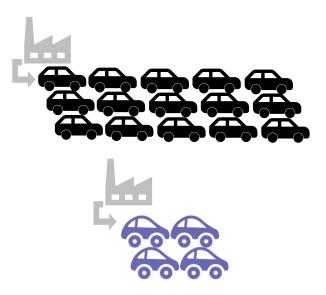
Results

Small target dataset



Large source dataset

+ Small target dataset



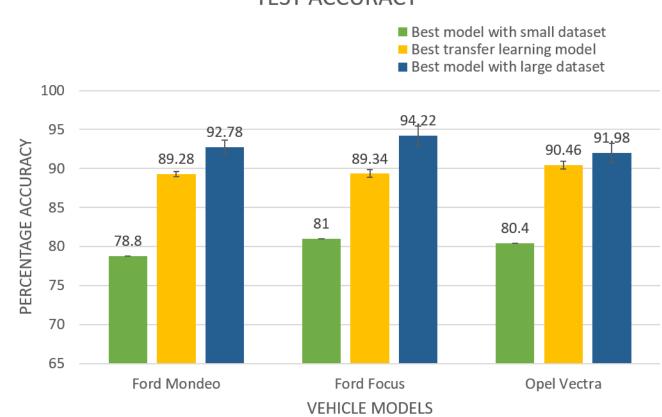
Large target dataset

Test accuracy: 78.80 %

Test accuracy: 89.28 %

Test accuracy: 92.78 %

Results



TEST ACCURACY

Data scarcity

- Scarcity of samples
 - Access to **few sound samples** from the target domain
 - Target domain is **labelled**

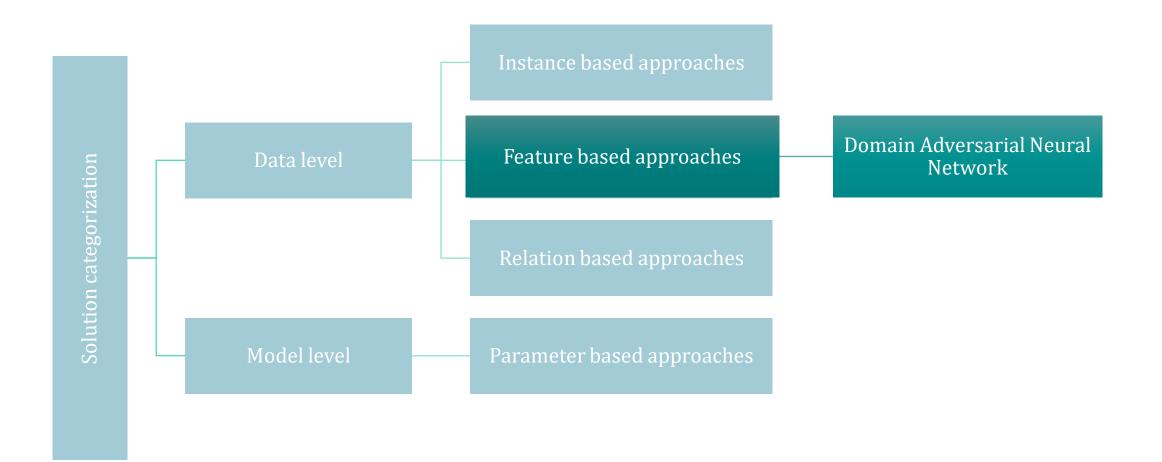
- Scarcity of labels
 - Access to **sufficient sound samples** from the target domain
 - Target domain is **unlabelled**

Dataset	Input features Training + used Validation		Testing	Labelled
Source	2 nd order profile	1000 + 100	500	Yes
Target	2 nd order profile	<mark>100 + 100</mark>	500	Yes

Dataset	Input features used	Training + Validation	Testing	Labelled
Source	2 nd order, loudness, sharpness profiles	1000 + 250	1000	Yes
Target	2 nd order, loudness, sharpness profiles	<mark>1000 + 250</mark>	1000	No

Scarcity of labels

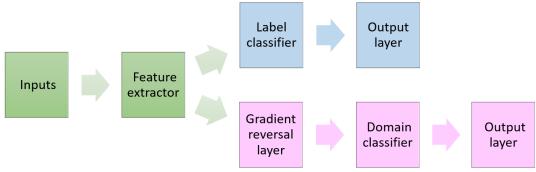
40



Zhuang, Fuzhen, et al. "A comprehensive survey on transfer learning." Proceedings of the IEEE 109.1 (2020): 43-76. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7#071d

Domain Adversarial Neural Network (DANN)

- Feature extractor extracts domain invariant and discriminative feature space
- In the forward propagation, the features are sent to:
 - 1. A binary classifier *Gd* to classify whether they come from the source or the target domain with domain label *d*.
 - 2. For the source domain data, the features are simultaneously sent to the label classifier *Gy* to predict class label *y*
- DANN seeks to minimize the source classification loss for the discriminativeness while maximizing the domain classification loss for the domain-invariance.
- The Gradient Reversal Layer (GRL) serves for an identity transformation in the forward propagation, while the downstream gradients will change the sign passing through the GRL during backpropagation.



Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The journal of machine learning research 17.1 (2016): 2096-2030.

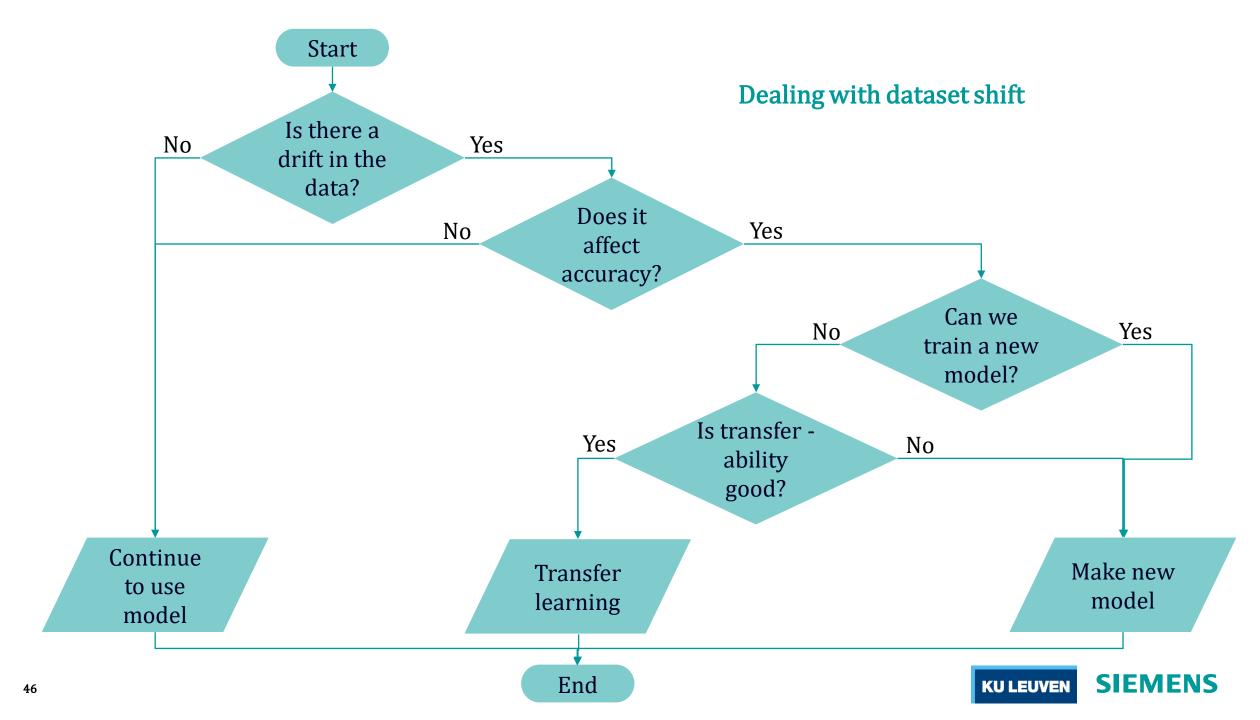
42

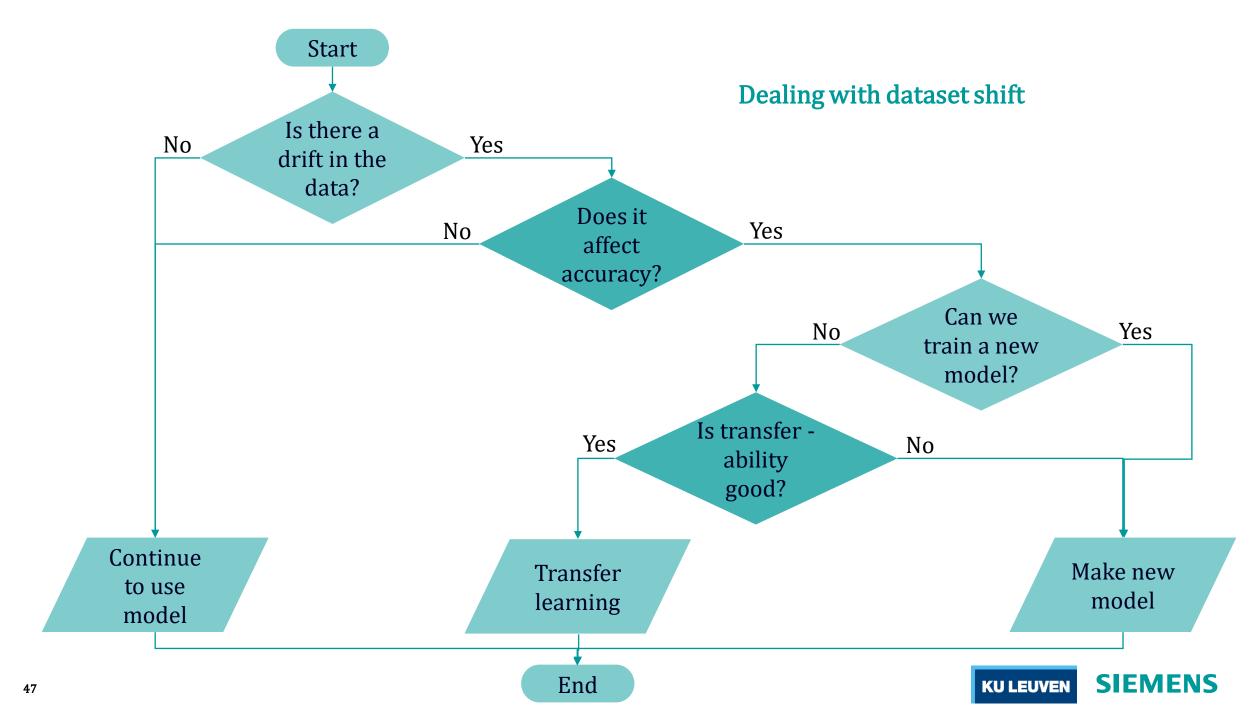
$$\mathcal{L}(\theta_f, \theta_y, \theta_d) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y^i(\theta_f, \theta_y) - \lambda \Big(\frac{1}{n} \sum_{i=1}^n \mathcal{L}_d^i(\theta_f, \theta_d) + \frac{1}{n'} \sum_{i=1}^{n'} \mathcal{L}_d^i(\theta_f, \theta_d) \Big)$$

n

Domain Adversarial Neural Network Results

Source Target		Without trend removal Percentage accuracy (Mean ± standard deviation)		After trend removal Percentage accuracy (Mean ± standard deviation)			
	luiget	Without DANN	With DANN	Fully labelled dataset	Without DANN	With DANN	Fully labelled dataset
Mondeo	Focus	78.9 ± 2.7	83.1 <u>+</u> 1.5	93.8 ± 0.1	91.4 ± 0.8	91.5 ± 0.3	020 + 0.7
Vectra		83.5 ± 3.6	85.2 <u>+</u> 2.5		86.1 <u>+</u> 1.1	88.0 ± 1.1	93.8 ± 0.7
Focus	Mondeo	71.9 ± 14.3	86.6 ± 0.6	93.2 ± 0.8	89.9 <u>+</u> 1.3	91.5 ± 0.6	040 + 07
Vectra		70.9 <u>+</u> 25.6	86.6 ± 0.8		88.9 <u>+</u> 1.2	90.6 ± 0.3	94.0 ± 0.7
Focus	Focus Mondeo Vectra	27.1 ± 3.9	82.3 ± 2.8	92.8 ± 0.4	85.3 ± 1.0	88.1 ± 1.2	93.8 ± 0.7
Mondeo		35.9 ± 10.3	83.4 ± 1.0		87.1 ± 0.2	88.5 ± 0.5	





Future work

- Assessing consequences of shift
- Estimation of transferability

Thank You!

We gratefully acknowledge the European Commission for its support of the Marie Sklodowska Curie program through the H2020 ETN MOIRA project (GA 955681)

KU System Dynamics

