Different approaches for the local fault detection in case of the signal with non-Gaussian noise

Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology

Wiedza Edukacja Rozwój

Politechnika Wrocławska

Politechnika Wrocławska

Condition monitoring of mining machines

300

Detection of local bearing damage using damage characteristics: impulsivity and cyclicity

Impulsive characteristic	Cyclic characteristic	Both characteristics
CVB vs. known kurtosis, alpha parameter, Gini index, spectra smoothness index	CORRELATION MAPS (Spearman, Kendall, Quadrant, Trimmed vs. known Pearson, autocovariation)	IMPROVED INFOGRAM vs. known classic infogram

Informative frequency band (IFB) selection from the *t/f* map (spectrogram) - Conditional Variance Based Selector (CVB)

Impulsive characteristic

- $\circ~$ Inspired by the 20/60/20 Rule (3 subsets) a state of balance:
- \circ New defined statistic extension of the 20/60/20 Rule for describing the

condition state of a machine with non-Gaussian noise:

$$\widehat{C}_{7}(x) \coloneqq \left(\frac{\widehat{\sigma}_{A_{3}}^{2} - \widehat{\sigma}_{A_{4}}^{2}}{\widehat{\sigma}} + \frac{\widehat{\sigma}_{A_{5}}^{2} - \widehat{\sigma}_{A_{4}}^{2}}{\widehat{\sigma}}\right)^{2} \sqrt{n}.$$

- \circ For a machine in an undamaged state, the statistic values are close to 0.
- Otherwise, the value of the statistic increases.
- The most important property:

tails of the distribution (non-cyclic impulses with large amplitudes)

are ignored.

Informative frequency band (IFB) selection from the *t/f* map (spectrogram) - Conditional Variance Based Selector (CVB)

Graphical comparison of selectors:

• The best selectivity of IFB in case of CVB selector in comparison to the known selectors

• ENVSI (Envelope Spectrum Based Indicator) as the numerical indicator verifying the performance of the methods:

AIS – amplitude of harmonics of the fault,

SES – squared envelope spectrum,

 M_1 – number of harmonics of the fault frequency (10 was taken as enough),

 M_2 number of frequencies considered for calculating the total energy of the SES.

Informative frequency band (IFB) selection from the t/f map (spectrogram) - Conditional Variance Based Selector (CVB)

- MC simulations using the crusher signal model and ENVSI to determine:
- the influence of the non-cyclic impulses amplitude (ANCI) and their amount (frequency ratio of non-cyclic to cyclic impulses FIM₂/FIM₁) on the methods effectiveness,
- consequences of overlapping of the frequency bands of cyclic and non-cyclic impulses.

Fig. 4. Monte Carlo simulations of the ENVSI indicator for variable parameters of the simulation signal (frequency and amplitude of non-cyclic pulses) - for different selectors

Informative frequency band (IFB) selection from the t/f map

• Another diagnostic approach fucuses on cyclic characteristic.

 Generalized, automatic procedure for identifying cyclic behavior in a signal (cross-correlation of frequency bands of the spectrogram) in shape of correlation map or IFB selector.

Fig. 5. Correlation maps

Informative frequency band (IFB) selection from the t/f map

• Another diagnostic approach fucuses on cyclic characteristic.

- New measures proposed for IFB selection:
- Quadrant and Trimmed correlations
 - more resistant to non-Gaussian noise.

Informative frequency band (IFB) selection from the t/f map

 New measures proposed for IFB selection: Quadrant and Trimmed correlations - more resistant to non-Gaussian noise.

The Quadrant correlation is defined as follows:

(1)
$$quad = \frac{(N_1 + N_3) - (N_2 + N_4)}{N}$$
,

 Q_1, Q_2, Q_3 , – quadrants formed by dividing the twodimensional database using the mean of the X and Y, creating 4 spaces of abundance N_1, N_2, N_3, N_4 respectively.

 N_i denotes the number of observations in Q_i quadrants, for i = 1,2,3,4 and N is the total value of the observations. The Quadrant correlation is calculated by first normalizing the data by coordinates median.

The Trimmed correlation for sample vectors xand y can be defined as a Pearson correlation ρ_{xy} calculated for special prepared data included in sample vectors z_x^c and z_y^c :

 $trim = \rho_{z_x^c, z_y^c}$

$$z_x^c = (x_1L_1, x_2L_2, \dots, x_nL_n), z_y^c = (y_1L_1, y_2L_2, \dots, y_nL_n).$$

 $x = (x_1, ..., x_n), y = (y_1, ..., y_n), z = (x_1y_1, ..., x_ny_n)$ and *L* is a 0 - 1 function defined as: $L_i = 1 \text{ if } z^{(k)} < z_i < z^{n-k+1}, \text{ and 0 otherwise,}$ where $k = \lfloor c \cdot n \rfloor$ for $0 \le c < 0.5$, *c* is a trimming constant, or fraction of data in the sample

c is a trimming constant or fraction of data in the sample z of the predicted number of outliers and $z^{(j)}$ is an ordered vector in ascending order.

IFB selection form $f/\Delta f$ map - IMPROVED INFOGRAM

incorrect

- Infogram combines **both** characteristics of damage.
- Application of negentropii (I) measured in the time domain of the signal (I_{SE}) and in the frequency domain (I_{SES}) for different $f/\Delta f$.
- Aggregated diagnostic information using the arithmetic mean from both I_{SE} and I_{SES} .

Negentropii:

Infogram:

$$M(f,\Delta f) = \frac{I_{SE}(f,\Delta f) + I_{SES}(f,\Delta f)}{2}$$

 $\hat{I}(x) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i^2}{\frac{1}{N} \sum_{i=1}^{N} x_i^2} \ln \frac{x_i^2}{\frac{1}{N} \sum_{i=1}^{N} x_i^2} \right)$

SE – squared envelope, SES – squared envelope spectrum

IFB selection form $f/\Delta f$ map - IMPROVED INFOGRAM

incorrect

4.5

4

3.5

2.5

 Δ I_{1/2}: max.value=4.8, level 3.6, bw= 1041.7Hz, f_=7812.5Hz

Detection of local bearing damage using damage characteristics: impulsivity and cyclicity

Impulsive characteristic

Cyclic characteristic

CVB vs. known kurtosis, alpha parameter, Gini index, spectra smoothness index

(Spearman, Kendall, Quadrant, Trimmed vs. known Pearson, autocovariation)

CORRELATION MAPS

Both characteristics

IMPROVED INFOGRAM vs. known classic infogram

Proposed methods:

- **new solutions**, simply defined (CVB, cross-correlation maps) or utilizing advanced signal processing techniques,
- modifications of known tools (new correlation maps, new infograms),
- compared with classical methods, in terms of many changeable variables,
- especially effective in case of signals with: low signal-to-noise ratio and with non-Gaussian noise.

Thank you for the attention

dr inż. Justyna Hebda-Sobkowicz

