

Detection and monitoring of bearings: a hybrid approach based on vibration analysis and data

Yosra MARNISSI and Mohammed EL-BADAOUI

20/06/23

01 Context and objectives **03** | Focus on the regression task

02 | Overview 04 Conclusion and perspectives

2 | Safran Tech / Digital Sciences & Technology / 20-06-2023 This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Context and objectives

4 Safran Tech / Digital Sciences & Technology / 20-06-202

Predictive maintenance of bearings

- Rotating mechanical component
 - Support for gears, shafts, discs, etc.

• Equip helicopters, aircraft engines, landing gears, power transmissions systems (AGB, RGB, etc.)

A bearing that is supporting the rotation of a shaft Safran Tech / Digital Sciences & Technology / 20-06-2023

5

Bearings are prone to failure

- Difficult environmental conditions (temperature), severe operating conditions (high speed and load)
- <u>Significant consequences</u>: maintenance tools, engine failure

A bearing defect

- Vibration health monitoring
 - A defective bearing emits specific vibrations

Vibrations caused by a bearing defect

Database

- A test bench in Safran Helicopter Engines (Bordes)
- Inner ring damage of a bearing
- Number of tested bearings: 10 bearings
- **Position**: 4 bearings Front/ 6 bearings Back

Main sensors

- <u>Vibrations</u>: 4 accelerometers (2 casing / 2 support)
- <u>Gastop</u>: measures the amount of iron particles released by the defective bearing into the oil circuit
- <u>Test conditions</u>: load, speed
- Acquisition : 2 phases
 - Initiation: the defect is created by artificially indenting the inner ring of the bearing
 - <u>Propagation</u>: The defect was detected (partially) by the gastop

6 Safran Tech / Digital Sciences & Technology / 20-06-2023

Objectives and constraints

 Develop an assistance tool to help Safran experts for predictive maintenance of bearings using vibration data

- 1. Indicate to the expert, the signals to be analyzed with priority
 - A classification task : target variable = phase either <u>initiation (healthy)</u> or <u>propagation (faulty)</u>
- 2. When it comes to estimating the degradation of a bearing, provide the expert with a pre-trained model on previous bearings of the same type
 - A regression task: target variable=gastop
- 3. Bonus: perform **pre-processing** steps, such as normalizing the data relative to the test conditions

A hybrid approach: ML/signal

- Leverage physics, expertise, and experts knowledge
- Simple, reproducible and scalabe

Overview

Overview

Step 1: Data preparation

Raw data

- 677 samples
- Each sample is a time series of 3M data points

Data formatting

- Time series segmentation: 33,665 samples
- Replace the time series with approximately 300 indicators
- Load and Gastop are unavailable for multiple tests

	AbsMean	Peak	ZCR	Size	Spectrum_Mean	Spectrum_Peak	Spe
0	2.926541	23.948912	0.391512	409600	0.004283	0.455834	
1	3.579618	34.597335	0.386617	409600	0.005185	0.455920	
2	1.769216	12.204674	0.460372	409600	0.002519	0.451814	
3	4 000478	35 851585	0.394315	409600	0.006018	0 456674	

Step 1: Data preparation

Feature engineering

- Semi-automatic generation: a sequence of transformations followed by a scalar indicator
 - Transformations derived from signal processing techniques
 - Simple scalar indicators, statistical in nature

11 Safran Tech / Digital Sciences & Technology / 20-06-2023

Step 2: Bias correction

Test conditions bias

- High variability in speed and load
 - Load and speed are discriminative variables of the defect phase
 - Health indicators are sensitive to test conditions

Consequences on the learning process

- <u>Classification</u>: Learning the difference in test conditions rather than the defect
- <u>Regression</u>: Model performance degrades when test conditions differ from training conditions
- Iso-conditions : Loss of information/not always feasible

12 Safran Tech / Digital Sciences & Technology / 20-06-2023 This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Step 2: Bias correction

13 | Safran Tech / Digital Sciences & Technology / 20-06-2023

Step 2: Bias correction

14 Safran Tech / Digital Sciences & Technology / 20-06-2023

Choice of the database

- Data with iso-conditions: fewer samples
- Selected indicators: fewer variables (indicators)
- Corrected indicators: need for load and speed data

Model choice

- One model = One estimator + A set of indicators
- Experiments with <u>multiple estimators</u>
- Search for the <u>best parameters through cross-validation</u>
- Search for the best model with progressive feature selection (model with 1 variable, 2 variables, multiple variables, etc.).

15 Safran Tech / Digital Sciences & Technology / 20-06-2023

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Validation choice

 Leave-One-Bearing-Out: Validate the model 's ability to generalize to new bearings

SAFRAN

Model construction

Focus on the regression task

Description (1/2)

In/Out

- Inputs : Indicators computed on vibration data
- Target : RMS of gastop (in log scale)
- Anomaly ⇒ data in the **propagation phase**
- Gastop ⇒ only available for 4 bearings
- Some errors in the gastop measurements <u>are currently being ignored</u>

17 | Safran Tech / Digital Sciences & Technology / 20-06-2023

Models

- Estimators: linear regression, SVR (Support Vector Regression), decision tree, random forest
- Parameter tuning: cross-validation
- Metric: mean absolute error
- Validation : Leave-One-Bearing-Out

Experiments

- Experiment 1: data with iso-conditions (Not possible)
- Experiment 2: selected indicators with the least correlation to test conditions (from the ones computed on preprocessed vibration with NAMVOC)
- Experiment 3: corrected indicators using data-driven method

Main results

Score (MAE +/- std)

- **Best model** with 3 explanatory variables
- Best indicators: moments on amplitude and frequency spectrum
- Results consistent with expert analysis of some signals
 - ✓ The spectrum becomes richer with the progression of the defect
 - ✓ The characteristic defect frequencies change as the defect progresses
- The proposed correction step provides better variables
- Importance of choosing the sensor

Predicting the gastop value from vibrations

	Selected indicators	Selected indicators + Corrected indicators
Sensor casing	0.85±0.45	0.62 ±0.21
Sensor support	0.75±0.13	0.52±0.20

19 Safran Tech / Digital Sciences & Technology / 20-06-2023

Conclusion and perspectives

Conclusion

Development of an Expert assistance tool for bearing monitoring

- Preprocess to normalize the data with respect to test conditions
- Classify signals as suspicious/healthy in a dataset
- Infer the size of defects from vibrations in the presence of an anomaly

Challenges encountered and Proposed solutions

Task	Challenge	Proposed solution	Limitation/To be improved
Classify/ Infer	Biased database	Correction through signal processing/expert knowledge/statistical learning	How accurate is the database ?
Infer	New problem Using gastop as a measurement correlated to defect size		Sensitivity of gastop/Source of defect (multiple components)/Gastop measurement errors
Preprocess	Open problem	An assumption and a model learned from the data	The speed and load are measurements that could be modulated by the defect

21 Safran Tech / Digital Sciences & Technology / 20-06-2023

POWERED BY TRUST

22 | Safran Tech / Digital Sciences & Technology / 20-06-2023 This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

