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Introduction:

• Physical Versus Virtual Sensors 
• Heterogeneous Fleet of Machines

Effective Identification of Cyclic and Resonance Excitations:

• Introduction to the identification approaches
• Description of the Problem and the system modeling
• Identification results
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Physical Versus Virtual Sensors:

Drawbacks:

• Limited spatial and temporal coverage

• Uncertainty

• Limited robustness

• Accuracy lost over time

Advantages:

• Significantly lower costs

• Where physical sensors can not be deployed

• Reducing signal noise

• Can recognize and compensate drift phenomenon in physical sensors

• Flexible and can be redesigned as required

• To share the same signal along the fleet of machines

Virtual Sensor Concept,

Martin D, Kühl N, Satzger G. Virtual sensors. Business & Information Systems Engineering. 2021 Jun;63:315-23.
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Heterogeneous Fleet of Machines

3-Stage Gear Box 2-Stage Gear Box

CharacteristicsBearings

Double row tapered. Self-aligningD

Single row taperedE

Single row cylindricalF/G

CharacteristicsBearings

Double row spherical. Self-aligningA

Single row taperedB

Double row cylindricalC

CharacteristicsBearings

Single row taperedH

Double row taperedI

Deep groove ball bearingsL1  /L2 

Different  Architecture Types
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Graph Theory:

Layer 1 - Geometry

2-Stage Gear Box3-Stage Gear Box
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Z axis Rotation

L2

BIII = BH + BI

BII = BC + BD

BI = BA + BB + BE

Graph Theory:2-Stage Gear Box

Layer 1 - Geometry

Z: Teeth 
Number

Gear

93
21

174
32

1
2
3
4

R.H: Rotating Hub
Bl: Blade
Sh: Shaft
GN: Generator

ShaftI
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ShI

ShII

ShIII

Spur Gear

BA

BI

Spur Gear

Z1

Z2

Z3

Z4

Input Load

Output Load
BC

Graph Theory:2-Stage Gear Box
Layer 2 – Interaction and Boundary conditions

BB BD

BH
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ShI

ShII

ShIII

Spur Gear

Spur Gear

Z1

Z2

Z3

Z4

Accelerometer

Optical Encoder

Graph Theory:2-Stage Gear Box
Layer 3 – Physical Sensors

BA BB BC BD

BIBH
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ShI

ShII

ShIII

Spur Gear

Spur Gear

Z1

Z2

Z3

Z4
BA BB BC BD

BIBH

Graph Theory:2-Stage Gear Box
Layer 4 – Virtual Sensor

Virtual sensor
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𝑀1 ∙ ሷ𝑥1 + 𝐶1 ∙ ሶ𝑥1 + 𝐾1 ∙ 𝑥1 = −𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1
𝑀2 ∙ ሷ𝑥2 + 𝐶2 ∙ ሶ𝑥2 + 𝐾2 ∙ 𝑥2 = 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1

𝐼1 ∙ ሷ𝜃1 + 𝐶𝑟1 ∙
ሶ𝜃1 = 𝑇𝑀 − 𝑅𝑏1 ∙ 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1 +𝑇𝑒𝑥1

𝐼2 ∙ ሷ𝜃2 + 𝐶𝑟2 ∙
ሶ𝜃2 = 𝑇𝑅 − 𝑅𝑏2 ∙ 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1

Fluctuation

𝐹𝐺𝑒𝑎𝑟 = 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1 & 

Primary Gear

Secondary 
Gear

𝑻𝑴

𝑻𝑹

Bearing 1 Bearing 2

Bearing 3 Bearing 4

Primary Shaft

Secondary Shaft

𝑭𝑮𝒆𝒂𝒓

Working Condition

Driving torque 𝑇𝑀
Load torque 𝑇𝑅

+ +

+

𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑦𝑠𝑡𝑒𝑚

𝑀1 ∙ ሷ𝑥1 + 𝐶1 ∙ ሶ𝑥1 + 𝐾1 ∙ 𝑥1
𝑀2 ∙ ሷ𝑥2 + 𝐶2 ∙ ሶ𝑥2 + 𝐾2 ∙ 𝑥2

𝐼1 ∙ ሷ𝜃1 + 𝐶𝑟1 ∙
ሶ𝜃1

𝐼2 ∙ ሷ𝜃2 + 𝐶𝑟2 ∙
ሶ𝜃2

𝑥1
𝑥2
𝜃1
𝜃2

sin

−𝛽 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

𝛽 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

−𝛽 ∙ 𝑅𝑏1 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

𝛽 ∙ 𝑅𝑏2 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

Cyclic Excitations

External 

Excitations

𝑇𝑒𝑥1 = 𝐶𝑅 ∙ 𝑡 + 𝐶𝑆 ∙ sin 𝜔(𝑡) ∙ 𝑡

Effective Identification of Cyclic and Resonance Excitations:
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Algorithm using complex Frequency Response Function (FRF) of a MIMO system

- the Least Square Complex Frequency Estimator (LSCF)

- The Least-Squares Frequency-Domain estimator (LSFD)

stabilization chart in a specified 
order range

• eigenfrequency, 
• modal damping factor
• identified FRF (discrete z-

model)

• complex residues 
• identified FRF using s-model

Based on: Advantages:

- produces “fast stabilizing” stabilization charts:

- use of frequency-dependent weighting functions (the
inclusion of weights in the Least Squares cost function allows
to improve accuracy of the estimates)

- the LSCF estimator can easily be adapted to more
sophisticated solvers such as the Generalized Total Least-
Squares implementation

 Modal Parameters Identification in 
Frequency Domain
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Spectrums in Hz, Order, and Angular  (Constant average speed): 
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• 𝑓𝑖(𝑡)— the user-specified frequency sweep

• 𝑓𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)(𝑡) — the actual output frequency sweep, usually equal to 𝑓𝑖(𝑡)

• 𝑦(𝑡) — the Chirp block output

𝑦(𝑡) = cos 𝜓 𝑡 + 𝜙0

• 𝜓(𝑡) — the phase of the chirp signal, where 𝜓(0) = 0, and 2𝜋𝑓𝑖(𝑡) is the 

derivative of the phase

𝑓𝑖(𝑡) =
1

2𝜋
⋅
𝑑𝜓(𝑡)

𝑑𝑡

• 𝜙0 — the Initial phase parameter value, where 𝑦𝑐ℎ𝑖𝑟𝑝(0) = cos(𝜙0)

Only holds for:

• Linear

• Quadratic

• Logarithmic

Swept frequency Excitation:

Notations:
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Frequency Sweep Block Output Chirp Signal
User-Specified Frequency 
Sweep, 𝑓𝑖(𝑡)

𝛽
Actual Frequency 
Sweep, 𝒇𝒊(𝒂𝒄𝒕𝒖𝒂𝒍) ( 𝒕 )

Linear 𝑦(𝑡) = cos 𝜓 𝑡 + 𝜙0 𝑓𝑖(𝑡) = 𝑓0 + 𝛽 ∙ 𝑡
𝛽 =

𝑓𝑖(𝑡𝑔) − 𝑓0

𝑡𝑔

𝑓𝑖(𝑎𝑐𝑡𝑢𝑎𝑙) (𝑡) = 𝑓𝑖(𝑡)

Quadratic Same as Linear 𝑓𝑖(𝑡) = 𝑓0 + 𝛽𝑡2
𝛽 =

𝑓𝑖(𝑡𝑔) − 𝑓0

𝑡𝑔
2

𝑓𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)(𝑡) = 𝑓𝑖(𝑡)

Logarithmic Same as Linear
𝑓𝑖(𝑡) = 𝑓0(

𝑓𝑖(𝑡𝑔)

𝑓0
)
𝑡
𝑡𝑔

Where 𝑓𝑖(𝑡𝑔) > 𝑓0 > 0

N/A 𝑓𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)(𝑡) = 𝑓𝑖(𝑡)

Swept cosine 𝑦(𝑡) = cos(2𝜋𝑓𝑖(𝑡)𝑡 + 𝜙0) Same as Linear Same as Linear 𝑓𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)(𝑡) = 𝑓𝑖(𝑡) + 𝛽𝑡

Equations for Unidirectional Positive Sweeps:

𝑓𝑖(𝑡) =
1

2𝜋
⋅
𝑑𝜓(𝑡)

𝑑𝑡
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 Logarithmic Instantaneous Frequency Sweep Rate:  Linear Instantaneous Frequency Sweep Rate:

𝑓𝑖(𝑡)

𝑓𝑖(𝑡)
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 A. Using “Cyclic external perturbation” + Ramp for excitation :

• Constant Gear Mesh Stiffness (𝑲𝒈 = 𝟏. 𝟖 ∙ 𝒆𝟖)

• Without cyclic fluctuation (𝛽 = 0)

𝑀1 ∙ ሷ𝑥1 + 𝐶1 ∙ ሶ𝑥1 + 𝐾1 ∙ 𝑥1 = −𝐹𝑔
𝑀2 ∙ ሷ𝑥2 + 𝐶2 ∙ ሶ𝑥2 + 𝐾2 ∙ 𝑥2 = 𝐹𝑔

𝐼1 ∙ ሷ𝜃1 + 𝐶𝑟1 ∙
ሶ𝜃1 = 𝑇𝑀 − 𝑅𝑏1 ∙ 𝐹𝑔 + 𝑇𝑒𝑥1

𝐼2 ∙ ሷ𝜃2 + 𝐶𝑟2 ∙
ሶ𝜃2 = 𝑇𝑅 − 𝑅𝑏2 ∙ 𝐹𝑔

To have cyclic excitation, depending on the angular position of the shaft:

Once we can use analogy and write  (𝜙0 = 0):

𝑦(𝑡) = cos 𝑓 ൗ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡

Then the Instantaneous Frequency 𝑓𝑖(𝑡) becomes: 

𝑓𝑖 𝑡 =
𝑓 ൗ𝑒𝑣

𝑡𝑟

2𝜋
⋅
𝑑𝜃1 𝑡

𝑑𝑡
=
𝑓 ൗ𝑒𝑣

𝑡𝑟

2𝜋
∙ ሶ𝜃1(𝑡)

𝑇𝑒𝑥1 = 𝐶𝑆 ∙ s𝑖𝑛 𝑓 ൗ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡 + 𝐶𝑅 ∙ 𝑡
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𝑓𝑖 𝑡 =
1
2𝜋

⋅ ሶ𝜃1(𝑡)
According to the plot of the Frequency pf the Rotation:

• 𝑓0 = 9.31 ℎ𝑧
• 𝑡𝑔= 52.1235 s
• 𝑓𝑖(𝑡𝑔) = 32.58 hz

• Since the frequency bandwidth covered by the Instantaneous

frequency is not relevant to bandwidth of interest, the FRF

estimation is not good!

• To cover a correct frequency bandwidth, the slope of ramp (𝐶𝑅 )

needs to increase.

• 𝑇𝑒𝑥1 = 𝐶𝑆 ∙ s𝑖𝑛 𝑓 Τ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡 + 𝐶𝑅 ∙ 𝑡

• 𝐶𝑆 = 50 & 𝐶𝑅 = 10 &    𝑓 Τ𝑒𝑣
𝑡𝑟

=1 

 Case A.1:
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According to the plot of the Frequency pf the Rotation:

• 𝑓0 = 14.006 ℎ𝑧
• 𝑡𝑔= 52.1235 s
• 𝑓𝑖(𝑡𝑔) = 247.642 hz

• Although the maximum frequency covered by the Instantaneous

frequency is lower than the second resonance, but due to the transient

response the FRF estimation is good enough!

• 𝑇𝑒𝑥1 = 𝐶𝑆 ∙ s𝑖𝑛 𝑓 Τ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡 + 𝐶𝑅 ∙ 𝑡

• 𝐶𝑆 = 50 & 𝐶𝑅 = 100 &    𝑓 Τ𝑒𝑣
𝑡𝑟

=1 

 Case A.2:
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 B. Non-linear gear interaction:

Working Condition

Driving torque 𝑇𝑀
Load torque 𝑇𝑅

+ +

+

𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑦𝑠𝑡𝑒𝑚

𝑀1 ∙ ሷ𝑥1 + 𝐶1 ∙ ሶ𝑥1 + 𝐾1 ∙ 𝑥1
𝑀2 ∙ ሷ𝑥2 + 𝐶2 ∙ ሶ𝑥2 + 𝐾2 ∙ 𝑥2

𝐼1 ∙ ሷ𝜃1 + 𝐶𝑟1 ∙
ሶ𝜃1

𝐼2 ∙ ሷ𝜃2 + 𝐶𝑟2 ∙
ሶ𝜃2

𝑥1

𝑥2

𝜃1

𝜃2

sin

−𝛽 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

𝛽 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

−𝛽 ∙ 𝑅𝑏1 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

𝛽 ∙ 𝑅𝑏2 ∙ 𝐹𝐺𝑒𝑎𝑟 ∙ 𝑠𝑖𝑛(𝑧1 ∙ 𝜃1)

Cyclic Excitations

External

Excitations

𝑀1 ∙ ሷ𝑥1 + 𝐶1 ∙ ሶ𝑥1 + 𝐾1 ∙ 𝑥1 = −𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1
𝑀2 ∙ ሷ𝑥2 + 𝐶2 ∙ ሶ𝑥2 + 𝐾2 ∙ 𝑥2 = 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1

𝐼1 ∙ ሷ𝜃1 + 𝐶𝑟1 ∙
ሶ𝜃1 = 𝑇𝑀 − 𝑅𝑏1 ∙ 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1 +𝑇𝑒𝑥1

𝐼2 ∙ ሷ𝜃2 + 𝐶𝑟2 ∙
ሶ𝜃2 = 𝑇𝑅 − 𝑅𝑏2 ∙ 𝐹𝑔 ∙ 1 + 𝛽 ∙ 𝑠𝑖𝑛 𝑧1 ∙ 𝜃1

• Varying Gear Mesh Stiffness (𝐾𝑔)

• With cyclic fluctuation (𝛽 = 0.3)
• The external excitation (𝑇𝑒𝑥1)was chosen as: 𝑇𝑒𝑥1 = 𝐶𝑅 ∙ 𝑡

• 𝑇𝑀 = 1 ∙ 266 𝑁 ∙ 𝑚
• 𝐶𝑅 = 30
• 450 𝑟𝑒𝑣

𝑖.
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• 𝑇𝑀 = 1 ∙ 266 𝑁 ∙ 𝑚
• 𝑪𝑹 = 𝟏𝟎𝟎
• 450 𝑟𝑒𝑣

𝑖𝑖.
• 𝑇𝑀 = 1 ∙ 266 𝑁 ∙ 𝑚
• 𝐶𝑅 = 100
• 𝟑𝟎𝟎 𝒓𝒆𝒗

𝑖𝑖𝑖.
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• 𝑻𝑴 = 𝟎. 𝟐𝟓 ∙ 𝟐𝟔𝟔 𝑵 ∙ 𝒎
• 𝑪𝑹 = 𝟑𝟎
• 𝟗𝟎𝟎 𝒓𝒆𝒗

𝑖𝑣.
• 𝑇𝑀 = 0.25 ∙ 266 𝑁 ∙ 𝑚
• 𝐶𝑅 = 30
• 𝟔𝟎𝟎 𝒓𝒆𝒗

𝑣.



MOIRA 

23

 C. Both the Non-linear gear interaction with external cyclic perturbation:

• Varying Gear Mesh Stiffness (𝐾𝑔)

• With cyclic fluctuation (𝛽 = 0.3)
• External excitations are a cyclic perturbation, and a ramp in torque!

𝑇𝑒𝑥1 = 𝐶𝑆 ∙ s𝑖𝑛 𝑓 ൗ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡 + 𝐶𝑅 ∙ 𝑡, 𝐶𝑆 = 50 & 𝐶𝑅 = 30

The Driving Torque:    𝑇𝑀 = 1 ∙ 266 𝑁 ∙ 𝑚

cyclic frequency 𝑓 Τ𝑒𝑣
𝑟𝑒𝑣

= 3

 Case C.1:
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 C. Both the Non-linear gear interaction with external cyclic perturbation:

𝑇𝑒𝑥1 = 𝐶𝑆 ∙ s𝑖𝑛 𝑓 ൗ𝑒𝑣
𝑡𝑟
∙ 𝜃1 𝑡 + 𝐶𝑅 ∙ 𝑡, 𝐶𝑆 = 50 & 𝐶𝑅 = 30

The Driving Torque:    𝑇𝑀 = 0.25 ∙ 266 𝑁 ∙ 𝑚

cyclic frequency 𝑓 Τ𝑒𝑣
𝑟𝑒𝑣

= 3

 Case C.2:
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Questions:

In the presence of large frequency values, why half the fundamental harmonic appears? might be due to:

• Sampling: Not only coarse sampling induces error (Aliasing error), but also very fine sampling might 
cause difficulties too – what is the criterion for the upper limit of frequency sampling?

• Non-linear interaction inside the system? How to avoid it?
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Introduction to the identification approaches

• Expanding of excitation and response signals in
the polynomial basis

• Using integration and derivation property of the
orthogonal functions

• so-called operational matrix of respectfully
integration and derivation

Book:

Time – Domain

Orthogonal Functions  

Differential equations can be transformed
into algebraic equations

B
as

is
:

Chebyshev Polynomials

Fourier Series

Block-Pulse Functions

Shifted Legendre 
Functions

“Modelling and Identification with Rational Orthogonal Basis Functions” Springer, London. 2005


