

Model-based & hybrid condition monitoring of mechatronic systems

2nd Public Technical Workshop Horizon 2020 European Training Network MOIRA 07/06/2024

Konstantinos Gryllias

Department of Mechanical Engineering, KU Leuven

Outline

- Introduction
- Model based monitoring based on state-parameter estimation
- Model based monitoring based on Force estimation
- Physical model-based monitoring
- Limitations of Machine Learning & Deep Learning
- Taxonomy of Transfer Learning
- Applications
- Conclusions
- Open challenges

Condition Monitoring

- Fault / Anomaly Detection
- Fault Diagnosis
- Prognosis / Estimation of RUL
- Healthy Operation
- Alarm

• STOP

Condition Monitoring

- Sensors Data acquisition
- Monitoring Indicators / Features
	- Signal Processing
		- Fourier Analysis, Short Term Fourier Transform, Wavelets, Envelope Analysis, Cyclostationary Indicators
	- Machine Learning & Deep Learning
		- End-to-End monitoring

Monitoring via state-parameter estimation

- Modelling of the component / system using some specific parameters
- State-parameter estimation and tracking of the specific parameters
- Threshold setting

Modelling

- Model of helical or spur gears
- 1-stage
	- 11 DOF = 2 rotations + 3 translations x 2 "bearings"/shafts + 3 translations x 1 housing
- 2-stage
	- 15 DOF = 3 rotations + 3 translations x 3 "bearings"/shafts + 3 translations x 1 housing

Modeling – Contact model

- MUTANT analytical
	- 1. Geometry calculation
	- 2. Stiffness
		- Computation along gear profile for a number of slices
		- Global stiffness (bending, shear, axial, …)
		- Local stiffness (local Hertzian contact)
	- 3. Analysis
		- Contact detection
		- Integration of EOMs

Modeling - Defects

- Pitting defect generation
	- # of defects: deterministic (e.g. 20)
	- Location
		- Width direction: uniform distribution
		- Height direction: normal distribution (mean = pitch line)
	- Diameter
		- Normal distribution (mean = $250 \ \mu m$)
	- Depth
		- Normal distribution (mean = 15 μ m)
- Input in model: tooth profile modification along flank (coordinates)
- Effect
	- Contact detection (analysis part of model)
	- Stiffness calculation \rightarrow limited (only significant influence for cracks)

… Compare

9 Mecha(tro)nic System Dynamics

Nominal settings

- Helical gear pair 21/21
- 20 pitting defects on gear 1, tooth 17
	- Average depth: 15 μ m ($\sigma_d = 2/3 \mu$ m)
	- Average diameter: 250 μ m ($\sigma_r = 15/3 \mu$ m)
	- Average height: pitch line (2.93mm, $\sigma_h = 2/3mm$)

Data generation - Example

2 samples for defect generation

Data generation - Example

Gear 1

 0.5

0

 $\overline{1}$

 $0.5\,$

 0.6

 0.6

 0.4

 0.4

 0.8

 $\overline{1}$

 $\bar{E}^{-0.01}$

 $\overline{E}^{-0.02}_{\Xi_{-0.04}}$

 $\mathbf{1}$

 -0.02

┱┱ 0.2

 $\overline{0}$

 -0.06 \uparrow

 $\overline{0}$

 0.2

KU LEUVEN

 0.8

 0.5

 $\overline{1}$

0

0

Data set – University of New South Wales

- →Encoders on each shaft free end
- → Accelerometer on housing
- Measurements at different loads / speeds / conditions

Gear mesh stiffness estimation (120 RPM, 20 Nm, large crack)

Input shaft rotation [#]

Results for crack sizes (120 RPM, 20 Nm)

Results for different torques (120 RPM, large crack)

For lower torques equivalent stiffness may be a bit lower due to reduced contact surface (+ signal to noise \downarrow)

Results for different speeds – 2 DOF model (20Nm)

Results for different speeds – 4 DOF model (20Nm)

Estimation of force in bearings

- Attach strain gauges to high SNR locations
- Assume a general boundary condition description
- Identify the boundary condition stiffness via optimization
- Estimate the force using Virtual Sensing techniques

Approach

- Consider grounded springs at the interface of the structure.
- Spring stiffnesses are found via optimization, using the measured strain response from a known load.
- Set up the optimization problem
	- Minimizing the difference between predicted and measured strain:

$$
\arg\min_{\mathbf{k}} \sum_{i=1}^{n} (\epsilon_i - \epsilon'_i)^2
$$

s. t. $\epsilon_i = B_i u$, $F = K_* u$

•The analytic derivative of the objective function is used to speed up the heavy optimization:

$$
\frac{\partial OF}{\partial k_j} = -2u^T \frac{\partial K_*}{\partial k_j} K_*^{-1} \sum_{i=1}^n B_i^T (B_i u - \epsilon_i)
$$

•This is an underdetermined problem \rightarrow regularization or smoothing filters are used.

Approach

Numerical validation case with known BC

Application

- •The global stiffness distribution is predicted. This leads to an updated model that accurately predicts the strain response of the experimental case.
- •The predicted input force matches with the measured input by the force cell.

Physical model-based monitoring

Bearing Physical Model Simulated signal of a Mass-Spring-Dumper System with a outer race fault 20 $15₁$ $ns(g)$ Mass of inner race 俯 -20 $+25$ 0.3 0.45 0.35 0.4 0.5 5 3 Time (s) Single side spectrum 6 2 BPFO 2 x BPFO y Simulation signals 0.8 隅 \odot 3 x BPFO 9.6 7 x \bigcap Δ External Force 1 0.2 8 hhhhyfyllig^wriflwill^{igh}Montae_{ct}ron-ydda_{wrio} 2 $\overline{1}$ 9 500 1000 1500 2000 1 Frequency (Hz) 1 $\overline{0}$ Mass of outer race Connections?External Force Observable vibration data

22 Mecha(tro)nic System Dynamics

FLANDERS

Mecha(tro)nic

Physical model-based monitoring

Bearing physical model

$M\ddot{x}(t) + C\dot{x}(t) + Kx(t) + f_c(t) + f_d(t) = w$

- Determine the size of the defect.
- 2. Calculate the displacement of the ball when it enter in and get out of the defect.
- 3. Calculate the relative displacement of the whole system including inner race, outer race and resonator.
- 4. Calculate the contact force $f_c(t)$ and the damping force $f_d(t)$.
- 5. Based on Runge-Kutta methods, the function can be solved.

RMS MAP

- 1. Set the first defect area as zero.
- 2. Based on the observed RMS acquired from the measurements, find all the possible RMS value based on a tolerance error.
- 3. Find one combination of defect extent angle and defect depth where the distance from the combination point to the last one point is minimum. (Principle of Minimum Energy).
- 50 4. Remove any points which are smaller than the defect depth or extent angle.
	- 5. Repeat 2-4, until the data acquisition is end.

Data

- 1. Speed: 2400 RPM
- 2. Force: 4 kN
- 3. Sampling frequency: 25.6 kHz

FLANDERS

THE MEDITION
The System Dynamics

KU LEUVEN

- 4. Duration: 5s
- 5. BPFO: 195.6021 Hz

[1] Gabrielli, A., Battarra, M., Mucchi, E., & Dalpiaz, G. (2024). Physics-based prognostics of rolling-element bearings: The equivalent damaged volume algorithm. Mechanical Systems and Signal Processing, 215, 111435. https://doi.org/10.1016/j.ymssp.2024.111435

The variation of maximum amplitude within [BPFO*0.98, BPFO*1.02] over time

The maximum frequency within [BPFO*0.98, BPFO*1.02] in EES

EES at the 4406 time stamp

EES at the 4407 time stamp

FLANDERS

MARITAN STRANGE DE LA SERVICIÓN DE LA SERVICI

EES at the 4408 time stamp

FLANDERS

MARITAN Mecha(tro)nic
System Dynamics

EES at the 4409 time stamp

FLANDERS

MARITAN STRANGE SERVICE
System Dynamics

RMS Map Search

RMS of bearing 1 from measurements Quasi-Defect size search

RMS Map Search

RMS of bearing 2 from measurements Quasi-Defect size search

RMS Map Search

RMS of bearing 3 from measurements Quasi-Defect size search

Quasi-defect size propagation

Monitoring – Availability of data ???

- If data is available
	- At high volumes
	- Including all possible fault types
	- Including all possible operating conditions, e.g. speeds, loads, temperatures
	- Being correctly labeled based on real ground truth
- Then a Machine Learning (ML) / Deep Learning (DL) model can be built:
	- End to End solution
	- Fault Detection / Diagnosis / Prognosis
- The availability of data was promised (Big Data Era) but we are not yet there

Limitations of ML & DL

- Despite their benefits ML and DL techniques suffer several limitations:
	- 1. They are based on the assumption that both training and testing data are drawn from the same distribution
		- In real-world applications this **is not** necessarily **the case**
	- 2. They require a significant amount of historical labeled based on ground truth healthy and faulty data, covering the full life of the machine, all possible failure modes, operating and environmental conditions
		- In real-world applications **this is not feasible**
	- 3. The **computational cost** starting from scratch for each operating condition, for each failure mode, for each unit **is high**

Transfer Learning as a possible solution

Transfer Learning aims to improve the learning of the target predictive function *f***T (.)** in the Target Domain **D^T** using the knowledge captured at the Source **Domain D_S** and the Source learning Task T_s

- Closed-set TL: The domains have identical features spaces and labels ($X_s =$ X_T , $Y_S = Y_T$
- **Partial TL:** The label space of the target domain is a subset of the source domain's label space ($Y_T \subset Y_S$)
- **Open-set TL:** The label space of the source domain is a subset of the target domain's label space. ($Y_S \subset Y_T$), e.g. a new fault mode arises in the target domain which is not included in the fault mode set of the source domain.
- **Universal TL:** There is no prior knowledge about the label space of the source and target domain ($Y_s \neq Y_T$)

- Due to the high economic and labor expenses in real-world industries, it is generally difficult for a single source to collect enough high-quality data to build an efficient data-driven predictive maintenance model in the target domain.
	- **Single Source Domain.** This technique relies on knowledge from a single source.
	- **Multiple Source Domain.** The multiple source domain transfer learning techniques transfer the knowledge from different multiple, but relevant sources.

- **Transfer in the Same Machine (TSM):** The source and target domain data are collected on the same machine but under different operational conditions or working environments.
- **Transfer across Different related Machines (TDM):** The source and target domain data are collected on different but related machines (significant data distribution discrepancy).
- **Transfer from Laboratory to Real Machine (TLRM):** The source domain data is obtained from a laboratory machine. Modeling failure modes in the lab are simpler, safer, and cheaper than gathering faulty data from a real-world machine.
- **Transfer from Virtual to Real Machine (TVRM):** The source domain data is collected from a machine's virtual model to provide transferable maintenance information for the target machine (limited real historical faulty data).

Transfer Learning as a possible solution

- **Case 1:** Available data from the Source, No data from the Target
	- A model is trained using the source data, transferred at the target and used directly at the incoming data.
		- Can be used for transfer between machines & between operating conditions
		- Usually low performance **WHY?**
		- Due to distribution change or domain shift between the two domains
- **Case 2:** Available data from the Source, Limited labeled data from the Target
	- A model is trained using the source data, transferred at the target and the last layers are retrained keeping frozen the first ones.
		- Can be used for transfer between machines & between operating conditions
		- Higher performance compared to Case 1 but very case dependent

Transfer Learning as a possible solution

- **Case 3:** Available data from the Source, Limited labeled or unlabeled data from the Target
	- Domain Adaptation techniques
	- A model is trained using the source data and the limited unlabeled data
		- Can be used for transfer between machines & between operating conditions
		- High performance

Blade ice detection in wind turbines

2 Wind Turbines:

- Turbine # 15 11/01/2015 01/01/2016
- Turbine $\# 21$ 11/01/2015 12/01/2015

Turbine #15

FLANDERS

Mecha(tro)nic
ystem Dynamics

KU LEUVEN

Domain-Adversarial Neural Network (DANN)

Feature Extractor

Expansion
System Dynamics

KU LEUVEN

FLANDERS

Ice detection in wind turbines

2D input (10*27)

Batch size: 128; Epoch: 50; 5 experiments Wind turbine #15 (44181 75%, 14726 25%) Wind turbine #21 (20641 75%, 6880 25%)

$$
\text{Score} = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)
$$

Ice detection in wind turbines

1D input (1*27)

Batch size: 512; Epoch: 50; 5 experiments Wind turbine #15 (543303 75%, 181099 25%) Wind turbine #21 (134677 75%, 44891 25%)

$$
Score = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)
$$

Transfer Learning among different conditions

• LVL KU Leuven Test Rig

Balanced load: No bolts on the disk Unbalanced load: One bolt on the disk

Dynamic Adversarial Adaptation Network (DAAN)

Transfer Learning among different load conditions

LVL Drivetrain (*Balanced load*) LVL Drivetrain (*Unbalanced load*)

Transfer Learning among different speed conditions

LVL Drivetrain (**Speed A**) LVL Drivetrain (**Speed B**)

 $\overline{2}$ 20

Huang Dataset, Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada

Mecha(tro)nic

KU LEUVEN

• When fault types match between the two test rigs

2 classes: healthy; inner race fault; 2 classes: healthy; inner race fault;

• When fault types do not match between the two test rigs

3 classes: healthy; inner race fault; outer race fault 3 classes: healthy; inner race fault 1; inner race fault 2

Physics-Informed Global Local Domain Adaptation Network

Mecha(tro)nic

System Dynamics

KU LEUVEN

Simulation-driven Domain Adaptation for Rolling Element Bearing Diagnosis

• **Challenge 1:** Insufficient training data in real industry especially for faulty cases

• **Challenge 2:** Category mismatch during transfer learning

Simulation model

- A bearing phenomenological model is used to generate faulty bearing vibration responses
- The model could simulate signals with different fault locations

KU LEUVEN

Simulation-driven domain adaptation

- A bearing phenomenological model is utilized to generate simulated signals with coarse labels: **healthy, inner race fault, outer race fault and rolling element fault**
- Real signals are under fine supervision with more categories based on severity, damage distribution, damage type etc.

Simulation signals

Simulation-driven domain adaptation

- The simulated signals are used as the source domain in the transfer learning model
- A new network architecture is proposed which can simultaneously deal with coarse supervised source and fine supervised target

Application: Case Western Reserve University

• The data is labelled in **10 fine categories** under 4 operating conditions

• Operating conditions

• Labels of the dataset

Application: Paderborn University

• The data is also labelled in **10 fine categories** under 4 operating conditions

• Operating conditions

• Labels of the dataset

Results: CWRU dataset

- Comparison to non-transfer models
	- 3 non-transfer models: MLP, Target only CNN, CNN with 2D inputs (WTCNN)
	- Ratio of training set is selected from **0.03** (20 real samples) to **0.30** (199 real samples)

The proposed method outperforms the non-transfer learning models with small ratio of training set using CWRU dataset.

Results: CWRU dataset

• Feature visualization using t-SNE

Proposed method

FLANDERS

A clear clustering of features are presented using the t-SNE for the proposed method

Mecha(tro)nic
System Dynamics

KU LEUVEN

Results: PU dataset

- Comparison to domain adaptation models
	- 3 state-of-the-art transfer learning models: VGG-16 transfer, AdaBN, MMD
	- Simulation-real against real-real transfer for different operating conditions

The proposed method shows high classification accuracy training with only 0.03 of the real data (40 real samples) using PU dataset.

Results

• Comparison to domain adaptation models

Digital Twin Framework

Virtual model

- Phenomenological model of a rolling element bearing
- How accurate should be the model?

Physics-Driven Cross Domain DT

Adaptive Domain Adaptation module

Application: LVL

Application: LVL

Application: LVL

Transfer task: Simulation \rightarrow LVL

A-distance

KU LEUVEN

Application: Ottawa University

Application: Ottawa University

 $\frac{10}{(5.85\%)}$

 $\frac{170}{(99.42%)}$

IRF
Prediction

 $0.00%$

 $\Big|_{(0.00\%)}^{\qquad 0}$

ORF

 $\begin{array}{c|c} 20 & \\ (11.70\% & \end{array}$

 $0 \choose (0.00\%)$

 $\frac{2}{(1.17\%)}$

nd truth
 $\frac{1}{R}$

ORF-

 63
 $(36.84%)$

 $^{22}_{(12.87%)}$

159
(92.98%)

KU LEUVEN

 -140

 -120

 -100

 80

88
(51.46%)

149
(87.13%)

 10
(5.85%)

IRF

Prediction

 (c) DANN

Transfer task: Simulation \rightarrow Ottawa University

Estimation of remaining useful life: Context-aware machine learning

- ➢ Prognosis
	- Predict the future state of a component using the available information or experiences
- ➢ Remaining Useful Life (RUL)
	- Remaining time until the component can no longer operate in the desired way (failure)

➢ Accurate RUL prediction can reduce costs by minimizing unexpected failures and exploiting the whole lifespan of components

Introduction

- \triangleright There are different approaches to estimating the RUL
- ➢ Deep Learning has shown interesting results due to its ability to model processes with high complexity

Introduction

- \triangleright Simulated dataset is not exactly like the real ones
- ➢ There is a domain shift between simulated signals (source domain) and real ones (target domain)
- ➢ **Transfer Learning** has been used to reduce the gap between domains

Introduction

- \triangleright Varying speed operating condition:
	- can be seen in industrial robots, wind turbines, servo motors, etc.
	- is another challenge for the model performance in RUL prediction
- \triangleright Tachometer signals can be used as a "Context" to improve the performance

"Context can be defined as any information about working conditions such as load, temperature, and speed that has a significant effect on the equipment's behavior"

- ➢ Utilize phenomenological model to generate signals
- \triangleright Mitigate the influence of insufficient data availability for training
- a) Impacts in the certain intervals (depending on the type of fault)

b) Load modulation (if applicable)

c) Excite the equivalent SDOF model with the impacts

- ➢ Adapt the synthetic signals using two modifier functions **R**ⁱ and Dⁱ
- ➢ **Periodic stepwise speed profile** is assumed as varying speed conditions

86 Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics

 PP_S

 $\triangleright PP_n = \frac{PP_r}{DP_n}$

 \triangleright We can now generate healthy signals similar to the real healthy signals

Form a new health indicator

➢ Normalized Peak-to-peak is used for **anomaly detection**

Peak-to-peak Normalized peak-to-peak

88 Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics

KU LEUVEN

- ➢ Putting all together, several synthetic run-to-failure datasets have been created
- \triangleright Input of the ML model is the raw signals obtained by this approach

- ➢ Domain Adversarial Neural Network (DANN) is used for domain adaptation
- ➢ Source dataset: synthetic run-to-failure data
- ➢ Target dataset: real data

- ➢ Input 1: Raw signals
- \triangleright Input 2: Time information
- ➢ Input 3: Speed information

 \triangleright Inspired by NLP, the order of measurements (time) and speed can be encoded as 1-D vectors

"We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k , PE_{pos+k} can be represented as a linear function of PE_{pos} "

$$
PE_{(pos, 2i)} = \sin\left(\frac{pos}{10000^{2i/d_{model}}}\right)
$$

\n
$$
PE_{(pos, 2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{model}}}\right)
$$

\nFor i = 0, 1, ..., $\frac{d_{model}}{2} - 1$
\nExample for $pos = 1$:
\n
$$
[PE_{(1,0)}, PE_{(1,1)}, ..., PE_{(1}, d_{model} - 1)]
$$

 d_{model} : hyper parameter (selected 24)

Application

- ➢ Smart Maintenance datasets
	- ➢ Run-to-failure tests of rolling element bearings
	- ➢ Vibration signal sampling rate: 50 kHz
	- \triangleright Signals are captured continuously
	- ➢ Test bearings: 6205-C-TVH from FAG
- \triangleright Tests were stopped due to different criteria
	- ➢ Temperature
	- ➢ Test duration
	- ➢ Peak-to-peak of vibration exceeds 20g

Application

- ➢ Smart Maintenance dataset
	- ➢ Run-to-failure tests of bearings under varying speed operating conditions
	- ➢ Speed is changing stepwise between 1000rpm and 2000rpm with the increment of 100rpm
	- \triangleright Each step is maintained for 60 seconds
- ≥ 6 run-to-failure tests
	- ➢ A new EoL threshold of peak-to-peak=15g has been defined to have a consistent dataset

- ➢ Anomaly detection criterion
	- 3 consecutive points above the highest threshold

95 Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics

➢ Anomaly detection criterion

■ 3 consecutive points above the highest threshold

A154 **And A155** A155 **And A156** A156

➢ RUL prediction

97 Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics

➢ RUL prediction

98 Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics

MSE and MAE of the predicted RUL of the SM bearings (in minutes)

- ➢ Visualize the deep features of the second to the last layer of regressor part by t-SNE
- \triangleright CA-DANN makes the feature space aware of the different operating conditions

Conclusions

- Transfer Learning has recently emerged as a powerful AI technique
- Leverages knowledge acquired for the source domain to cope with the lack of data, especially faulty data, in the target domain
- The amount of computation power and time can be drastically decreased by leveraging pre learned knowledge from various source domains
- Transfer can be realized between operating conditions and machines
- Simulation-to-real transfer learning can help in solving the data scarcity problem

Open challenges

- How to avoid negative transfer learning?
- When the transfer improves the results?
- How to select the sources domain?
- How complicated should be a virtual model?
- How can the methodologies be applied at a system level?

Acknowledgments

- Flanders Make SBO DGTwin Prediction
- Research Foundation Flanders (FWO) SBO Robustify
- Flanders AI Research Program
- China Scholarship Council
- European Commission MOIRA MSCA

konstantinos.gryllias@kuleuven.be

www.mech.kuleuven.be/lmsd

[lmsd_kuleuven](https://www.instagram.com/lmsd_kuleuven)

[lmsd-kuleuven](https://www.youtube.com/@lmsd-kuleuven)

[lmsd.kuleuven](https://www.facebook.com/lmsd.kuleuven)

[lmsd-kuleuven](https://www.linkedin.com/showcase/lmsd-kuleuven/)

[lmsd_kuleuven](https://twitter.com/lmsd_kuleuven)

www.mech.kuleuven.be/lmsd-joboffers

Community Mecha(tro)nic
System Dynamics

KU LEUVEN

FLANDERS

Thank you

