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• Introduction

• Model based monitoring based on state-parameter estimation

• Model based monitoring based on Force estimation

• Physical model-based monitoring

• Limitations of Machine Learning & Deep Learning

• Taxonomy of Transfer Learning

• Applications

• Conclusions 

• Open challenges
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Outline
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Condition Monitoring

• Fault / Anomaly Detection 

• Fault Diagnosis 

• Prognosis / Estimation of RUL

• Healthy Operation

• Alarm

• STOP



• Sensors – Data acquisition

• Monitoring Indicators / Features

• Signal Processing

• Fourier Analysis, Short Term Fourier Transform, Wavelets, Envelope Analysis, 

Cyclostationary Indicators

• Machine Learning & Deep Learning

• End-to-End monitoring
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Condition Monitoring



• Modelling of the component / system using some specific parameters

• State-parameter estimation and tracking of the specific parameters

• Threshold setting 
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Monitoring via state-parameter estimation



• Model of helical or spur gears

• 1-stage

• 11 DOF = 2 rotations + 3 translations x 2 “bearings”/shafts + 3 translations x 1 housing

• 2-stage

• 15 DOF = 3 rotations + 3 translations x 3 “bearings”/shafts + 3 translations x 1 housing
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Modelling



• MUTANT analytical

1. Geometry calculation

2. Stiffness

• Computation along gear profile for a number of slices

• Global stiffness (bending, shear, axial, …)

• Local stiffness (local Hertzian contact)

3. Analysis

• Contact detection

• Integration of EOMs
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Modeling – Contact model



• Pitting defect generation

• # of defects: deterministic (e.g. 20)

• Location

• Width direction: uniform distribution

• Height direction: normal distribution (mean = pitch line)

• Diameter

• Normal distribution (mean = 250 𝜇𝑚)

• Depth

• Normal distribution (mean = 15 𝜇𝑚)

• Input in model: tooth profile modification along flank (coordinates)

• Effect

• Contact detection (analysis part of model)

• Stiffness calculation → limited (only significant influence for cracks)
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Modeling - Defects
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Nominal settings

• Helical gear pair 21/21

• 20 pitting defects on gear 1, tooth 17

• Average depth: 15 𝜇𝑚 (𝜎𝑑 = 2/3𝜇𝑚)

• Average diameter: 250 𝜇𝑚 (𝜎𝑟 = 15/3𝜇𝑚)

• Average height: pitch line (2.93mm, 𝜎ℎ = 2/3𝑚𝑚)

2 samples for defect generation
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Data generation - Example
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Data generation - Example



→Encoders on each shaft free end

→Accelerometer on housing

• Measurements at different loads / speeds / conditions
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Data set – University of New South Wales
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Gear mesh stiffness estimation (120 RPM, 20 Nm, 

large crack)
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Results for crack sizes (120 RPM, 20 Nm)
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Results for different torques (120 RPM, large crack)



Results for different speeds – 2 DOF model (20Nm)



Results for different speeds – 4 DOF model (20Nm)



• Attach strain gauges to high SNR locations

• Assume a general boundary condition description

• Identify the boundary condition stiffness via optimization

• Estimate the force using Virtual Sensing techniques
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Estimation of force in bearings



• Consider grounded springs at the interface of the structure. 

• Spring stiffnesses are found via optimization, using the measured strain response 
from a known load.

• Set up the optimization problem

• Minimizing the difference between predicted and measured strain:

argmin
k



𝑖=1

𝑛

𝜖𝑖 − 𝜖′𝑖
2

𝑠. 𝑡. 𝜖𝑖 = 𝐵𝑖𝑢 , 𝐹 = 𝐾∗𝑢

•The analytic derivative of the objective function is used to speed up the heavy
optimization:

𝜕𝑂𝐹

𝜕𝑘𝑗
= −2𝑢𝑇

𝜕𝐾∗

𝜕𝑘𝑗
𝐾∗

−1

𝑖=1

𝑛

𝐵𝑖
𝑇 𝐵𝑖𝑢 − 𝜖𝑖

•This is an underdetermined problem → regularization or smoothing filters are used.
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Approach



Mecha(tro)nic System Dynamics19

Approach

Grounded 

spring elements
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Numerical validation case with known BC



•The global stiffness distribution is predicted. This leads to an updated model

that accurately predicts the strain response of the experimental case.

•The predicted input force matches with the measured input by the force cell.
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Application
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Physical model-based monitoring
Bearing Physical Model
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Physical model-based monitoring
Bearing Physical Model
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Flowchart
Physical model

Acquisition 

system
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Bearing physical model

External Force 𝑤𝑥
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1. Determine the size of the defect.

2. Calculate the displacement of the ball 

when it enter in and get out of the 

defect.

3. Calculate the relative displacement of 

the whole system including inner race, 

outer race and resonator.

4. Calculate the contact force 𝒇𝒄 𝑡 and 

the damping force 𝒇𝒅 𝒕 .

5. Based on Runge-Kutta methods, the 

function can be solved.
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RMS MAP 
1. Set the first defect area as zero.

2. Based on the observed RMS acquired from the 

measurements, find all the possible RMS value 

based on a tolerance error. 

3. Find one combination of defect extent angle 

and defect depth where the distance from the 

combination point to the last one point is 

minimum. (Principle of Minimum Energy).

4. Remove any points which are smaller than the 

defect depth or extent angle.

5. Repeat 2-4, until the data acquisition is end.
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Data

1. Speed: 2400 RPM

2. Force: 4 kN

3. Sampling frequency: 25.6 kHz

4. Duration: 5s

5. BPFO: 195.6021 Hz

[1] Gabrielli, A., Battarra, M., Mucchi, E., & Dalpiaz, G. (2024). Physics-based prognostics of rolling-element bearings: 

The equivalent damaged volume algorithm. Mechanical Systems and Signal Processing, 215, 111435. 

https://doi.org/10.1016/j.ymssp.2024.111435

[1] 
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Anomaly detection 

The maximum frequency within 

[BPFO*0.98, BPFO*1.02] in EES

The variation of maximum amplitude within 

[BPFO*0.98, BPFO*1.02] over time

4408 (x 5 min)
4840 (x 5 min)
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EES at the 4406 time stamp 

Anomaly detection 
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EES at the 4407 time stamp 

Anomaly detection 
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EES at the 4408 time stamp 

Anomaly detection 
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EES at the 4409 time stamp 

Anomaly detection 
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RMS Map Search

RMS of bearing 1 from measurements Quasi-Defect size search
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RMS of bearing 2 from measurements Quasi-Defect size search

RMS Map Search
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RMS of bearing 3 from measurements Quasi-Defect size search

RMS Map Search
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Quasi-defect size propagation

Bearing 2Bearing 1 Bearing 3



• If data is available

• At high volumes

• Including all possible fault types

• Including all possible operating conditions, e.g. speeds, loads, temperatures

• Being correctly labeled based on real ground truth

• Then a Machine Learning (ML) / Deep Learning (DL) model can be built:

• End – to – End solution

• Fault Detection / Diagnosis / Prognosis

• The availability of data was promised (Big Data Era) but we are not yet there
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Monitoring – Availability of data ???



• Despite their benefits ML and DL techniques suffer several limitations:

1. They are based on the assumption that both training and testing data are

drawn from the same distribution

• In real-world applications this is not necessarily the case

2. They require a significant amount of historical labeled based on ground

truth healthy and faulty data, covering the full life of the machine, all

possible failure modes, operating and environmental conditions

• In real-world applications this is not feasible

3. The computational cost starting from scratch for each operating

condition, for each failure mode, for each unit is high
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Limitations of ML & DL



Transfer Learning aims to improve the learning of the target predictive function

fT(.) in the Target Domain DT using the knowledge captured at the Source

Domain DS and the Source learning Task TS
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Transfer Learning as a possible solution

Source Domain

DS
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Target Domain

DT

Learning Task
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Source Target
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Taxonomy of Transfer Learning (TL)

Domains Tasks

Traditional ML & DL DS = DT TS = TT

Transductive TL DS ≠ DT TS = TT

Inductive TL DS = DT OR DS ≠ DT TS ≠ TT

Unsupervised TL DS = DT OR DS ≠ DT TS ≠ TT

Feature spaces Labels

Homogenous Learning XS = XT YS = YT

Heterogeneous LearningXS ≠ XT or/and YS ≠ YT



• Closed-set TL: The domains have identical features spaces and labels ( XS =

XT , YS = YT )

• Partial TL: The label space of the target domain is a subset of the source

domain’s label space ( YT ⊂ YS )

• Open-set TL: The label space of the source domain is a subset of the target

domain’s label space. (YS ⊂ YT ), e.g. a new fault mode arises in the target

domain which is not included in the fault mode set of the source domain.

• Universal TL: There is no prior knowledge about the label space of the source

and target domain (YS ≠ YT )
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Taxonomy of Transfer Learning (TL)



• Due to the high economic and labor expenses in real-world industries, it is

generally difficult for a single source to collect enough high-quality data to build

an efficient data-driven predictive maintenance model in the target domain.

• Single Source Domain. This technique relies on knowledge from a single 

source.

• Multiple Source Domain. The multiple source domain transfer learning

techniques transfer the knowledge from different multiple, but relevant 

sources.
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Taxonomy of Transfer Learning (TL)



• Transfer in the Same Machine (TSM): The source and target domain data are
collected on the same machine but under different operational conditions or working
environments.

• Transfer across Different related Machines (TDM): The source and target domain
data are collected on different but related machines (significant data distribution
discrepancy).

• Transfer from Laboratory to Real Machine (TLRM): The source domain data is
obtained from a laboratory machine. Modeling failure modes in the lab are simpler,
safer, and cheaper than gathering faulty data from a real-world machine.

• Transfer from Virtual to Real Machine (TVRM): The source domain data is
collected from a machine’s virtual model to provide transferable maintenance
information for the target machine (limited real historical faulty data).
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Taxonomy of Transfer Learning (TL)



• Case 1: Available data from the Source, No data from the Target

• A model is trained using the source data, transferred at the target and used 

directly at the incoming data. 

• Can be used for transfer between machines & between operating conditions

• Usually low performance

• Due to distribution change or domain shift between the two domains

• Case 2: Available data from the Source, Limited labeled data from the Target

• A model is trained using the source data, transferred at the target and the 

last layers are retrained keeping frozen the first ones.

• Can be used for transfer between machines & between operating conditions

• Higher performance compared to Case 1 but very case dependent
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Transfer Learning as a possible solution

WHY?



• Case 3: Available data from the Source, Limited labeled or unlabeled data 

from the Target

• Domain Adaptation techniques

• A model is trained using the source data and the limited unlabeled data

• Can be used for transfer between machines & between operating conditions

• High performance

Mecha(tro)nic System Dynamics45

Transfer Learning as a possible solution



2 Wind Turbines: 

• Turbine # 15     11/01/2015 - 01/01/2016

• Turbine # 21     11/01/2015 - 12/01/2015
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Blade ice detection in wind turbines

Number Description Number Description

1 Wind speed 2 Generator speed

3 Grid side active power 4 Wind direction

5 Mean wind direction 6 Yaw position

7 Yaw speed 8 Pitch1 angle

9 Pitch2 angle 10 Pitch3 angle

11 Pitch1 speed 12 Pitch2 speed

13 Pitch3 speed 14 Pitch motor 1 temperature

15 Pitch motor 2 temperature 16 Pitch motor 3 temperature

17 X-direction acceleration 18 Y-direction acceleration

19 Environment temperature 20 Cabin temperature

21 Ng5 1 temperature 22 Ng5 2 temperature

23 Ng5 3 temperature 24 Ng5 1 charger DC current

25 Ng5 1 charger DC current 26 Ng5 1 charger DC current

27 Data group identification

Number of samples Ratio

Normal 350255 88.92%

Icing 23892 6.07%

Unlabeled 19739 5.01%

Turbine #15

Number of samples Ratio

Normal 168930 88.68%

Icing 10683 5.58%

Unlabeled 10926 5.73%

Turbine #21



Mecha(tro)nic System Dynamics47

Domain-Adversarial Neural Network (DANN)
Feature Extractor 

1 Convolution layer + BN layer 1*3/16, ReLU

2 Convolution layer + BN layer 1*3/32, ReLU

3 Maxpooling layer Stride: 2

4 Convolution layer + BN layer 1*3/64, ReLU

5 Convolution layer + BN layer 1*3/128, ReLU

6 Maxpooling layer Stride: 2

7 Convolution layer + BN layer 1*3/256, ReLU

8 Adaptive average pooling layer 1

Discriminator

1 Fully connected layer 128, Leaky ReLU

2 Fully connected layer 64, Leaky ReLU

3 Fully connected layer 2, Sigmoid

Classifier

1 Fully connected layer 100, ReLU

2 Fully connected layer 2
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Ice detection in wind turbines
2D input (10*27)

Batch size: 128; Epoch: 50; 5 experiments

Wind turbine #15 (44181 75%, 14726 25%)

Wind turbine #21 (20641 75%,  6880 25%)

#15 -> #21 #21 -> #15

2D_CNN

(test on Source only)

2D_CNN

(test on Target only)
2D_DANN

2D_CNN 

(test on Source only)

2D_CNN 

(test on Target only)
2D_DANN

Accuracy 0.7499 ± 0.0241 0.7156 ± 0.0265 0.8354 ± 0.0500 0.7678 ± 0.0653 0.8512 ± 0.0113 0.8675 ± 0.0068

Precision 0.7212 ± 0.0393 0.7268 ± 0.0612 0.8274 ± 0.0905 0.8080 ± 0.0924 0.8818 ± 0.0138 0.8835 ± 0.0291

Recall 0.9536 ± 0.0468 0.8795 ± 0.0786 0.9418 ± 0.0625 0.8383 ± 0.1255 0.8666 ± 0.0388 0.8978 ± 0.0489

F1 0.8195 ± 0.0091 0.7913 ± 0.0120 0.8759 ± 0.0306 0.8141 ± 0.0615 0.8735 ± 0.0131 0.8893 ± 0.0103

Score 0.7023 ± 0.0392 0.6672 ± 0.0524 0.8068 ± 0.0716 0.7471 ± 0.0803 0.8476 ±0.0052 0.8604 ± 0.0055

1
Score

2

TP TN

TP FN TN FP

 
= + 

+ + 
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Ice detection in wind turbines
1D input (1*27)

Batch size: 512; Epoch: 50; 5 experiments

Wind turbine #15 (543303 75%, 181099 25%)

Wind turbine #21 (134677 75%,   44891 25%)

#15 -> #21 #21 -> #15

1D_CNN

(test on Source only)

1D_CNN

(test on Target only)
1D_DANN

1D_CNN

(test on Source only)

1D_CNN

(test on Target only)
1D_DANN

Accuracy 0.9461 ± 0.0092 0.9388 ± 0.0093 0.9441 ± 0.0378 0.8984 ± 0.0759 0.9013 ± 0.0310 0.9349 ± 0.0252

Precision 0.9597 ± 0.0071 0.9527 ± 0.0065 0.9672 ± 0.0084 0.9712 ± 0.0138 0.9756 ± 0.0019 0.9761 ± 0.0007

Recall 0.9838 ± 0.0067 0.9839 ± 0.0138 0.9737 ± 0.0408 0.9205 ± 0.0957 0.9175 ± 0.0351 0.9538 ± 0.0269

F1 0.9715 ± 0.0049 0.9679 ± 0.0051 0.9701 ± 0.0212 0.9425 ± 0.0456 0.9454 ± 0.0181 0.9647 ± 0.0141

Score 0.6886 ± 0.0547 0.6029 ± 0.0550 0.7242 ± 0.0710 0.7336 ± 0.0793 0.7906 ± 0.0110 0.8058 ± 0.0137

1
Score

2

TP TN

TP FN TN FP

 
= + 

+ + 



• LVL KU Leuven Test Rig
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Transfer Learning among different conditions

Unbalanced disk

Balanced load: No bolts on the disk

Unbalanced load: One bolt on the disk
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Dynamic Adversarial Adaptation Network (DAAN)
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Transfer Learning among different load conditions

LVL Drivetrain (Balanced load) LVL Drivetrain (Unbalanced load)

Accuracy [%] CNN (Without TL) DANN (With TL) DAAN (With TL)

Unbalanced load         Balanced load 90.84 92.04 99.33

Balanced load         Unbalanced load   88.77 89.80 98.99



Mecha(tro)nic System Dynamics53

Transfer Learning among different speed conditions

LVL Drivetrain (Speed A) LVL Drivetrain (Speed B)

Speed CNN (Without TL) DANN (With TL) DAAN (With TL)

3-5 31.11 32.50 88.89

3-10 47.96 40.81 97.96

3-20 32.97 32.98 44.68

3-30 34.78 32.61 55.43

3-40 32.32 32.32 31.31

5-3 64.04 65.17 89.88

5-10 65.31 64.29 97.95

5-20 30.85 67.02 84.04

5-30 32.61 67.39 82.61

5-40 32.32 67.67 66.66

10-3 29.21 29.21 80.90

10-5 66.66 64.44 88.89

10-20 100.00 100.00 85.10

10-30 67.39 68.48 86.95

10-40 46.46 67.68 78.78

Speed CNN (Without TL) DANN (With TL) DAAN (With TL)

20-3 29.21 29.21 52.81

20-5 51.11 62.22 87.77

20-10 68.36 56.12 97.96

20-30 92.39 94.57 86.96

20-40 67.67 70.71 96.97

30-3 35.96 34.83 53.93

30-5 51.11 62.22 87.78

30-10 52.04 51.02 97.95

30-20 92.55 89.36 85.11

30-40 87.88 92.93 96.97

40-3 35.96 34.83 55.06

40-5 55.56 40.00 76.67

40-10 66.33 44.89 97.96

40-20 94.68 75.53 85.11

40-30 96.74 90.22 86.96



Huang Dataset, Department of Mechanical Engineering, 

University of Ottawa, Ottawa, Ontario, Canada
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Transfer Learning among test rigs/machines



• When fault types match between the two test rigs
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Transfer Learning among test rigs/machines

Accuracy [%] CNN (Without TL) DANN (With TL) DAAN (With TL)

Huang            LVL 52.56 52.56 88.78

LVL            Huang 50.00 50.00 99.54

2 classes: healthy; inner race fault; 2 classes: healthy; inner race fault; 



• When fault types do not match between the two test rigs
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Transfer Learning among test rigs/machines

Accuracy [%] CNN (Without TL) DANN (With TL) DAAN (With TL)

Huang          LVL 35.27 53.37 55.88

LVL           Huang 33.70 69.91 64.97

3 classes: healthy; inner race fault; outer race fault 3 classes: healthy; inner race fault 1; inner race fault 2
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Transfer Learning among test rigs/machines



Mecha(tro)nic System Dynamics58

Transfer Learning among test rigs/machines

Physics-Informed Global Local Domain Adaptation Network



• Challenge 1: Insufficient training data in real industry especially for faulty cases

• Challenge 2: Category mismatch during transfer learning 
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Simulation-driven Domain Adaptation for Rolling 

Element Bearing Diagnosis

Health Condition Faulty Condition
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Simulation model
• A bearing phenomenological model is used to generate faulty bearing vibration responses 

• The model could simulate signals with different fault locations  

MacFadden bearing model:



Mecha(tro)nic System Dynamics61

Simulation-driven domain adaptation
• A bearing phenomenological model is utilized to generate simulated signals with coarse

labels: healthy, inner race fault, outer race fault and rolling element fault

• Real signals are under fine supervision with more categories based on severity, damage

distribution, damage type etc.



• The simulated signals are used as the source domain in the transfer learning model

• A new network architecture is proposed which can simultaneously deal with coarse supervised 

source and fine supervised target  
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Simulation-driven domain adaptation



• The data is labelled in 10 fine categories under 4 operating conditions
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Application: Case Western Reserve University

• Operating conditions

• Labels of the dataset



• The data is also labelled in 10 fine categories under 4 operating conditions
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Application: Paderborn University

• Operating conditions

• Labels of the dataset



• Comparison to non-transfer models

• 3 non-transfer models: MLP, Target only CNN, CNN with 2D inputs (WTCNN)

• Ratio of training set is selected from 0.03 (20 real samples) to 0.30 (199 real samples) 
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Results: CWRU dataset

The proposed method outperforms

the non-transfer learning models

with small ratio of training set using

CWRU dataset.



• Feature visualization using t-SNE
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Results: CWRU dataset

MLP Target only CNN

WTCNN

Proposed method

A clear clustering of features

are presented using the t-SNE

for the proposed method



• Comparison to domain adaptation models

• 3 state-of-the-art transfer learning models: VGG-16 transfer, AdaBN, MMD

• Simulation-real against real-real transfer for different operating conditions 
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Results: PU dataset

Condition 1 Condition 2 Condition 3

The proposed method shows high classification

accuracy training with only 0.03 of the real data

(40 real samples) using PU dataset.



• Comparison to domain adaptation models
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Results
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Digital Twin Framework



• Phenomenological model of a 

rolling element bearing

• How accurate should be the 

model?
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Virtual model
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Physics-Driven Cross Domain DT
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Adaptive Domain Adaptation module
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Application: LVL 
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Application: LVL
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Application: LVL
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Application: Ottawa University
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Application: Ottawa University
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Application: Ottawa University



Department of Mechanical Engineering, LMSD - Mecha(tro)nic System Dynamics79

Estimation of remaining useful life: Context-aware machine learning

➢ Prognosis

• Predict the future state of a component using the available information or experiences

➢ Remaining Useful Life (RUL)

• Remaining time until the component can no longer operate in the desired way (failure)

➢ Accurate RUL prediction can reduce costs by 

minimizing unexpected failures and exploiting 

the whole lifespan of components
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Introduction

➢ There are different approaches to estimating the RUL

➢ Deep Learning has shown interesting results due to its ability to model processes with high complexity

• Data hungry

• Collecting big dataset is:

• Laborious

• Of high cost

• Simulation dataset:

• Dynamic models

• Phenomenological 

models
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Introduction

➢ Simulated dataset is not exactly like the real ones

➢ There is a domain shift between simulated signals (source domain) and real ones (target domain)

➢ Transfer Learning has been used to reduce the gap between domains
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Introduction

➢ Varying speed operating condition:

• can be seen in industrial robots, wind turbines, servo motors, etc.

• is another challenge for the model performance in RUL prediction

➢ Tachometer signals can be used as a “Context” to improve the performance

“Context can be defined as any information about working conditions such as load,

temperature, and speed that has a significant effect on the equipment’s behavior”
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Methodology
➢ Utilize phenomenological model to generate signals

➢ Mitigate the influence of insufficient data availability for training

a) Impacts in the certain intervals (depending on the type of fault)

b) Load modulation (if applicable)

c) Excite the equivalent SDOF model with the impacts

d) Add noise

(a)

(b)

(c)

(d)
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Methodology
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Methodology

𝑺𝑠,𝑖 = 𝑺𝑏 ,𝑖 . (𝑹𝑖 × 𝐷𝑖)  (10) 

𝐷𝑖 =  
1

𝑒𝑎 𝑡𝑖−𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦  
          

𝑡𝑖 < 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑡𝑖 ≥ 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦
 (11) 

 𝑹𝑖 = 𝑐𝑗  .  𝒓𝒑𝒎𝑖  (12) 

 
𝑖: measurement index

𝑗: speed index

Unadopted signal by phenomenological modelAdapted signal

Represents damage

Represents speed influence

Should be found for each speed independently

➢ Adapt the synthetic signals using two modifier functions Ri and Di

➢ Periodic stepwise speed profile is assumed as varying speed conditions
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Methodology

➢ Find 𝑐𝑗 in a way that peak-to-peak of real and synthetic signals should be as close as possible 

Find 𝒄𝒋 corresponding to the minimum error for each speed independently

P-to-P of synthetic 

signals

P-to-P of real

signals
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Methodology
➢ We can now generate healthy signals similar to the real healthy signals

➢𝑃𝑃𝑛 =
𝑃𝑃𝑟

𝑃𝑃𝑠

➢ Normalized Peak-to-peak is used for anomaly detection

Peak-to-peak Normalized peak-to-peak

Form a new health indicator
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Methodology

➢ Find 𝐷𝑖 using curve-fitting on the normalized peak-to-peak of the real dataset after the anomaly

𝑺𝑠,𝑖 = 𝑺𝑏 ,𝑖 . (𝑹𝑖 × 𝐷𝑖)  (10) 

𝐷𝑖 =  
1

𝑒𝑎 𝑡𝑖−𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦  
          

𝑡𝑖 < 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝑡𝑖 ≥ 𝑡𝑎𝑛𝑜𝑚𝑎𝑙𝑦
 (11) 

 

With a slight change in 𝑎 several trajectories will be created
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Methodology

➢ Putting all together, several synthetic run-to-failure datasets have been created

➢ Input of the ML model is the raw signals obtained by this approach
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Methodology

➢ Domain Adversarial Neural Network (DANN) is used for domain adaptation

➢ Source dataset: synthetic run-to-failure data

➢ Target dataset: real data
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Methodology

➢ Input 1: Raw signals

➢ Input 2: Time information

➢ Input 3: Speed information

Proposed architecture based on DANN model
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Methodology

➢ Inspired by NLP, the order of measurements (time) and speed can be encoded as 1-D vectors

“We chose this function because we hypothesized it would allow the model to easily learn to

attend by relative positions, since for any fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be represented as a linear

function of 𝑃𝐸𝑝𝑜𝑠”

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛  
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙 
  

(8) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠  
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙 
  

 
For i = 0, 1, …, 

𝑑𝑚𝑜𝑑𝑒𝑙

2
− 1

Example for  𝑝𝑜𝑠 = 1: 

𝑃𝐸 1,0 , 𝑃𝐸 1,1 , … , 𝑃𝐸 1 𝑑𝑚𝑜𝑑𝑒𝑙 − 1

𝑑𝑚𝑜𝑑𝑒𝑙 : hyper parameter (selected 24)
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Application

➢ Smart Maintenance datasets

➢ Run-to-failure tests of rolling element bearings

➢ Vibration signal sampling rate: 50 kHz

➢ Signals are captured continuously

➢ Test bearings: 6205-C-TVH from FAG

➢ Tests were stopped due to different criteria

➢ Temperature

➢ Test duration

➢ Peak-to-peak of vibration exceeds 20g
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Application

➢ Smart Maintenance dataset

➢ Run-to-failure tests of bearings under varying speed operating conditions

➢ Speed is changing stepwise between 1000rpm and 2000rpm with the increment of 100rpm

➢ Each step is maintained for 60 seconds

➢ 6 run-to-failure tests

➢ A new EoL threshold of peak-to-peak=15g has been defined to have a consistent dataset
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Results

➢ Anomaly detection criterion

▪ 3 consecutive points above the highest threshold

A150 A153A148
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Results

A155 A156A154

➢ Anomaly detection criterion

▪ 3 consecutive points above the highest threshold
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Results

➢ RUL prediction

A148 A150 A153
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Results

A154 A155 A156

Time (min.)
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➢ RUL prediction
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Results

Bearing Error CNN DANN
CA-DANN

(time context)
CA-DANN

A148
MSE 6.22 6.76 6.68 6.02

MAE 4.68 4.91 5.14 4.51

A150
MSE 7.46 6.45 7.04 6.03

MAE 6.12 5.42 5.75 4.71

A153
MSE 3.80 3.44 3.17 2.13

MAE 3.19 2.65 2.83 1.77

A154
MSE 6.69 6.81 6.39 4.72

MAE 5.57 5.60 4.73 3.81

A155
MSE 6.97 5.94 6.78 4.20

MAE 5.44 4.79 5.19 3.58

A156
MSE 5.44 5.49 4.51 3.12

MAE 4.40 4.79 3.89 2.58

MSE and MAE of the predicted RUL of the SM bearings (in minutes)
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Results
➢ Visualize the deep features of the second to the last layer of regressor part by t-SNE

➢ CA-DANN makes the feature space aware of the different operating conditions 

DANN CA-DANN



• Transfer Learning has recently emerged as a powerful AI technique

• Leverages knowledge acquired for the source domain to cope with the lack of

data, especially faulty data, in the target domain

• The amount of computation power and time can be drastically decreased by

leveraging pre learned knowledge from various source domains

• Transfer can be realized between operating conditions and machines

• Simulation-to-real transfer learning can help in solving the data scarcity

problem

Mecha(tro)nic System Dynamics101

Conclusions



• How to avoid negative transfer learning?

• When the transfer improves the results?

• How to select the sources domain?

• How complicated should be a virtual model?

• How can the methodologies be applied at a system level?
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Open challenges



• Flanders Make SBO DGTwin Prediction

• Research Foundation – Flanders (FWO) SBO Robustify

• Flanders AI Research Program

• China Scholarship Council

• European Commission MOIRA MSCA
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