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Outline
@ Background: Fault detection
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Placement of detection in condition monitoring

Three stages of the condition monitoring
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Placement of detection in condition monitoring

Focus of presentation

» Fault detection » Out of distribution detection
» Anomaly detection » Novelty detection
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Motivation for proper fault detection evaluation
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Evaluate the following model with test data on the
left:

Model: f(apple) = good
(Model that always says an apple is good)

Accuracy:
accuracy = 25/26 = 96% : High accuracy!

Is this an effective measure if the model is
performing well?
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Outline

@® The confusion matrix
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What makes for a good fault detection method?

Predicted
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Healthy

KU Leuven: Noise & Vibration Research Group

6



The confusion matrix
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The confusion matrix
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The confusion matrix
Predicted
Faulty

Healthy

)
g :
- IET A T Each quadrant
Q Correct Detection Missed Detection has an
E associated cost
l_
>
ey
=
©
(0]
I

False AIarm Correct Rejection

KU Leuven: Noise & Vibration Research Group

9



The confusion matrix

Predicted
Faulty | Not Faulty
Faulty TP FP
Not Faulty | FN TN

TP: Correct detection, FP: False alarm,
FN: Missed detection, TN: Correctly identified as not faulty.

Actual

» Fault detection metrics should incorporate performance on both normal and faulty
data (F1, ROC, PRC etc)
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Confusion matrix example

Model: f(apple) = good (Model that always says an appleis good)

Actual

Positive

Predicted

Positive

Negative
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Earlier detection is not always better

Predicted
Faulty | Not Faulty

Faulty - FP
Not Faulty | FN TN

TP: Correctly predicted as faulty, FP: Incorrectly predicted as faulty,
FN: Incorrectly predicted as not faulty, TN: Correctly predicted as not faulty.

Actual

> Early detection is often mainly concerned with _
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Earlier detection is not always better

Predicted
Faulty | Not Faulty

Faulty - FP
Not Faulty | FN TN

TP: Correctly predicted as faulty, FP: Incorrectly predicted as faulty,
FN: Incorrectly predicted as not faulty, TN: Correctly predicted as not faulty.

Actual

> Early detection is often mainly concerned with _

> The importance of identifying - samples is often overlooked.
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Earlier detection is not always better

Predicted
Faulty | Not Faulty

Faulty - FP
Not Faulty | FN TN

TP: Correctly predicted as faulty, FP: Incorrectly predicted as faulty,
FN: Incorrectly predicted as not faulty, TN: Correctly predicted as not faulty.

Actual

> Early detection is often mainly concerned with _

> The importance of identifying - samples is often overlooked.
> total cost = cost(TP) - TP + cost(FN) - FN + cost(FP) - FP + cost(TN) - TN
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Outline

® Threshold dependent metric: F1 score
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Confusion Matrix Cocktails
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“Accuracy on | sensitivity, recall, hit rate, or true positive rate (TPR)
positive class” TP TP
TPR = P~ TPIFN =1-FNR
specificity, selectivity or true negative rate (TNR)

“How often

was the precision or positive predictive value (PPV)

model PPV= —F _ _1 FDR

correct TP +FP

when itwas  negative predictive value (NPV)

betting on TN

the positive NPV = IN+Fn ! FOR

class”
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miss rate or false negative rate (FNR)

FN FN
FNR_T_F‘I\I—-{»TP_I_TPR
fall-out or false positive rate (FPR)
FP FP
FPR=F =wp an — 1 TR
false discovery rate (FDR)
FpP
FDR = FPrTP = 1-PPV
false omission rate (FOR)
FOR= —*N__ _ 1 _Npy
~ FN+TN
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F1 score for balanced performance

* We want to find a compromise between precision (If model says the data point
is positive it is actually positive) and recall/sensitivity (You have a high

accuracy on the positive class).

e Measure between 0 and 1

Example

.

True positives (TP): 75 correctly identified as faulty machinery.
False positives (FP): 10 samples incorrectly identified as faulty
machinery.

False negatives (FN): 5 faulty machinery samples incorrectly
classified as non-faulty.

True negatives (TN): 10 samples were correctly identified as non-

faulty machinery.

Precision=TP /(TP + FP) = 75/(75+10) = 0.882
Recall = TP/ (TP + FN) = 75/(75+5) = 0.938

F1 score=2 * ((Precision * Recall) / (Precision+ Recall)) =2 *
((0.882*0.938)/(0.882 + 0.938)) = 0.909
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2 recision - recall
= —o P

recall ! + precision ! precision + recall

Recall

Precision
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Outline

@ Threshold independent metrics: ROC and PRC
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The Receiver Operating Curve (ROC)

We mostly —_ 10 We can compute
care about E | the area under this
this region = sl IR Lowering th ~~——curve as summary
5] . g threshold . N
for fault R T metric for how well The ROC curve
detection :E:_’ g s /,f‘ a model is doing shows the
© u . over all thresholds.
> i trade-off
= 2 & .
] go4 ga”do_m between hit
al s uessing
Jo rate (TPR) and
0.2 o
false alarm rate
0ol L2 (FPR).
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False Positive Rate
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Precision Recall Curve (PRC)

» Show the trade-off between precision and recall/sensitivity as the threshold of
detection is varied.

. = b The PRC curve
” Threshold example: ShO\(I:IVS tl;_[?
. trage-o
£ Lowering threshold Faulty if RMS vibration b
H above 8G vs 9G vs 10G. etween
precision and
0 recall.
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Recall
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Precision Recall Curve vs ROC Curve

Precision Recall Curve:
» Better for imbalanced datasets: Does not accounts for TN unlike ROC.
» Less intuitive than ROC
ROC Curve:
» Often easier to interpret than PRC
» Overly optimistic for highly imbalanced datasets
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Outline

@ The ROC curve and the cost of false alarms
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The ROC curve and CBM cost

Cost = TPR x Ctp + TNR x Cyp
+ FPR x CFP + FNR x CFN

> Assume

® Cyp = 0 (No cost for correctly detecting a

fault)
Ctn = 0 (No cost for correctly detecting a
healthy sample)

» Cpp (False alarm cost) and Cgy
(Missed detection cost) are varied.

P Cx: Accounts for 1) Cost per
occurrence 2) Prevalence of the
fault

» FNR=1-TPR
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Cost and prevalence differences for different

Cost(Missed detection)/Cost(False alarm) High

Low fault prevalence High fault prevalence
(Rarely broken) (Broken all the time)

S

Cost(Missed detection)/Cost(False alarm) Low

22 KU Leuven: Noise & Vibration Research Group

applications

Both the
relative cost of
false alarms
and missed
detections and
the prevalence
of faults should
be considered
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Cost and prevalence differences for different applications

Cost(Missed detection)/Cost(False alarm) High

Both the
a .
relative cost of
FP: Unnecessary maintenance FP: Annoying umbrella notification

FN: Loss of life FN: You get soaked false al.arms

and missed
Low fault prevalence High fault prevalence detections and
(Rarely broken) (Broken all the time) the prevalence

of faults should
be considered

FP: Annoying sms naotification FP: Require unnecessary pit stop
FN: Can't play snake on bus v FN: Complete race with 3 wheels

Cost(Missed detection)/Cost(False alarm) Low
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Models suitable for different applications

ROC curves with the same AUC

1.0
Not all ROC
05 curves are
created equal.
oc Orange:
- Preferred for
F e.g. package
041 inspection,
Blue: Preferred
0.2 for e.g. nuclear
power plants.
0.0
0.0 02 0.4 0.6 08 1.0
FPR

24 KU Leuven: Noise & Vibration Researc KU LEUVEN



Goal: Optimise ROC curve given cost and prevalence

» Increase correct detections,
without contributing to more
false alarms.

» Consider the relative cost of
false alarms and missed
detections and the prevalence
of faults.
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Outline

@ Conclusions
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Conclusions

» Evaluation metrics used to evaluate fault detection methods should
incorporate performance on both normal and faulty data.

» Evaluation metrics should be designed based on the application and
relative cost of false positives and false negatives.
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Thank you for your attention
Any comments / critique will be appreciated

douw.marx@kuleuven.be
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