

Probabilistic Uncertainty-Aware Decision Fusion of Neural Network for Bearing Fault Diagnosis

Atabak Mostafavi

Mohammad Siami, Andreas Friedmann, Tomasz Barszcz, Radoslaw Zimroz

Introduction

Condition monitoring is a system constructed from many parts Sensors, measurement devices, CM algorithms, operators ...

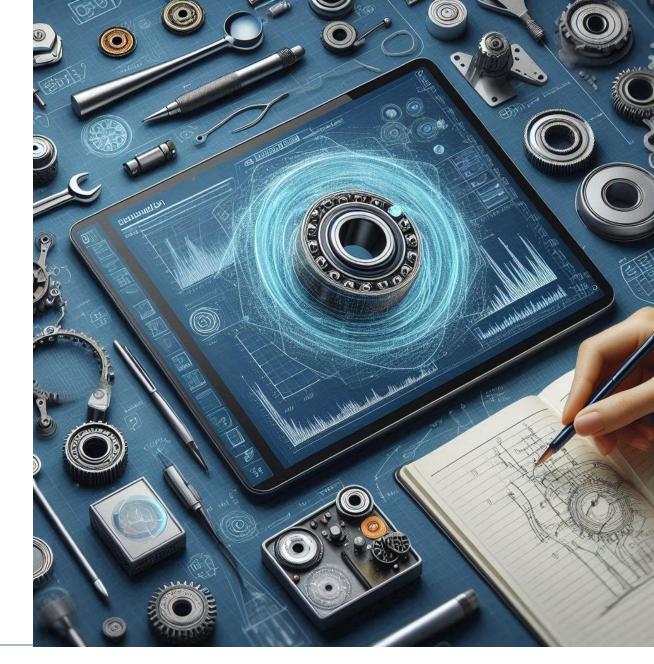
Importance of reliability of the condition monitoring systems False diagnosis is costly and reduces the trust of operators in CMS

Uncertainty and Reliability Uncertainty can undermine the predictability of the model

Objective of study Mitigating uncertainty by fusion

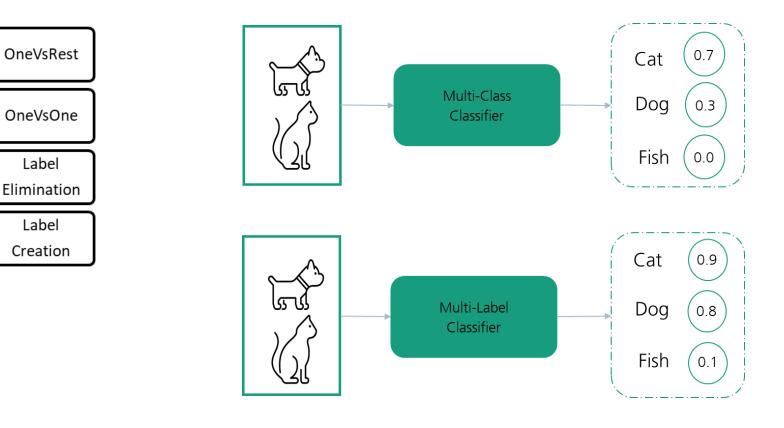
Methodology

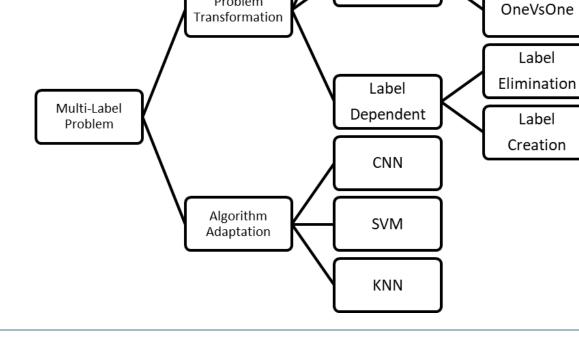
Bayesian model averaging for an uncertainty aware decision fusion



Methodology Multi-Label Classifier

- Multi-Label classification
- One-against-all multi-label classifier
- Algorithm adaptation





Problem

Label Powerset

Binary

Relevance

Methodology

BAYESIAN MODEL AVERAGING

- Selecting one model vs. Bayesian Model averaging
- Considering Uncertainty of each model with BMA
- Models' prior probability represented as a weight: non-negative and sum up to one

 $\pi(\theta_{l}|Y,M_{l}) = \frac{L(Y|\theta_{l},M_{l})\pi(\theta_{l}|M_{l})}{\int L(Y|\theta_{l},M_{l})\pi(\theta_{l}|M_{l})d\theta_{l}}$

$$BF_{lm} = \frac{\pi(M_l|Y)}{\pi(M_m|Y)}$$

 $\pi(\Delta|\mathbf{Y}) = \Sigma_{l=1}^{k} \pi(\Delta|\mathbf{M}_{l}, \mathbf{Y}) \pi(\mathbf{M}_{l}|\mathbf{Y})$

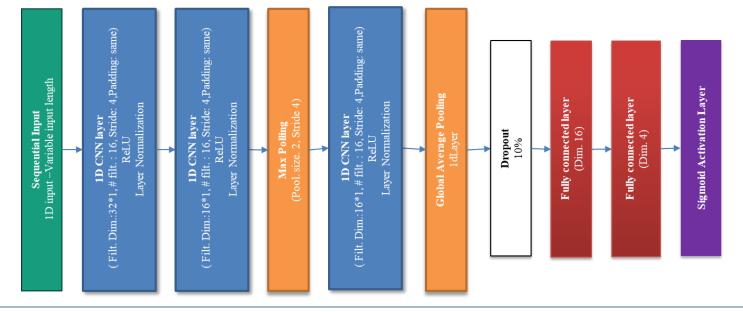
PRIOR ESTIMATION: LOG LIKELIHOOD MAXIMIZATION

"Maximum likelihood estimator is the value of the parameter vector that maximizes the likelihood function, that is, the value of the parameter vector under which the observed data were most likely to have been observed"

$$L(w_k|Y) = \Sigma_t \Sigma_{k=1}^k \log \pi(\Delta|M_l, Y) w_k$$

Model 1D Multi-Label CNN

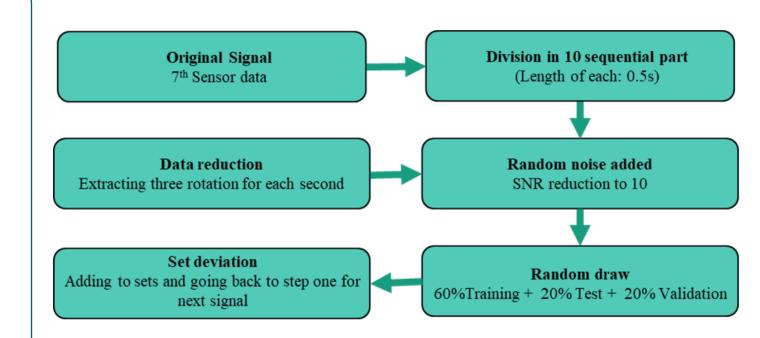
- Reduction of computational complexity by 1D CNN
- Architecture and cost function difference
- Lightweight model and suitable for real-time
- No preprocessing step needed
- Two similar 1D multi-label CNNs for two different accelerometers



Hyperparameter	Value					
Mini batch size	25					
Max epoch	50					
Network selection (early stoppage)	Minimum validation loss					
optimizer	Adam					
Learning rate	0.001					
Loss Function	Binary cross-entropy					
Padding	"Same"					
Software	MATLAB					

Dataset and Data handling MAFAULDA Open Dataset

- Test bench: SpectraQuest
- Bearings: two ABVT 8 rolling ball bearings
- RMP range: 700 3600 rpm
- Sensors:
 - \circ Tachometer
 - o Two tridimensional accelerometers
 - Microphone
- Sampling Frequency: 50 KHz
- Measurement duration: 5s
- Outer/Inner/cage fault scenarios



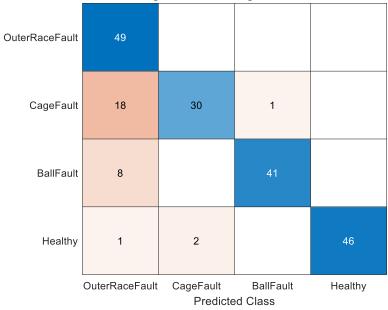
Result Single model result

* Acceptance threshold = 0.5

Model	Accuracy (%)
Overhang accelerometer	87.76
Underhung accelerometer	84.69



Tangential overhung accelerometer



Tangential underhung accelerometer

Tangential underhung accelerometer

Result Bayesian Model averaging

* Acceptance threshold = 0.5

* Acceptance threshold = 0.5		Case A		Case B											
Model	Accuracy (%)		Overhang	Underhun	Combined	Overhang	Underhung	Combined				Combined m	odel via BMA		
Overhang accelerometer	87.76		nang	hung	ined	nang	hung	ined	Ou	terRaceFault	49				
Underhung accelerometer	84.69	Outer race fault	0.04	0.59	0.39	0.46	0.78	0.66	Class	CageFault	7	42			
Combined	91.84	Cage fault	1.00	0.24	0.52	0.01	0.2	0.13	True C	BallFault	6		43		
Model		Ball fault	0.00	0.05	0.03	0.54	0.02	0.21							
Posterior probability of overhang model (%)	Posterior probability of underhung model (%)	Healthy	0.00	0.00	0.00	0.00	0.00	0.00		Healthy	1			48	
37.28	62.72	True label	Cage Fault			Outer Race Fault					OuterRaceFault CageFault BallFault Healthy Predicted Class				

Conclusion

Uncertainty-Aware Fusion Algorithm

Implementing an uncertainty-aware fusion algorithm helps differentiate between high and low-quality information

Bayesian odel Averaging

Bayesian model averaging serves as both a model selector and an uncertainty-aware decision fusion algorithm

Benefits of the Suggested Methodology

Simplicity

Lightweight

Increased Accuracy

The Authors Gratefully acknowledge the European commission for its support of the Marie Sklodowska Curie program through the ETN MOIRA project (GA 955681).

Questions?

Thank You!

12.09.2024 © Fraunhofer LBF

Seite 10