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End-of-line testing and monitoring in fleets
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Booming noise

Booming noise is a low frequency structure-borne noise in the interior of a vehicle which causes discomfort to
passengers and thus affecting the vehicle sound quality.
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Transfer learning
* Transferlearningis the idea of re-using knowledge learned in one situation for another situation

A transfer is done from a source domain and task to a target domain and task

* The domain consists of the input feature space X and the marginal probability distribution p(X)

* The taskis the predictive function learned from training data f

4 Hadrien Bertrand. Hyper-parameter optimization in deep learning and transfer learning : M‘ ha(r o;mc m SI E M EN S
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Fine tuning

* Applicable when we have a large source dataset and a small target dataset
* Steps:

Select source dataset and task

Train a neural network on the source domain.

The lower layers which capture more generic features are frozen, while the end layers are further trained on
the target domain

Trained on source domain
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Source domain selection

* Source domain selection is the process of identifying the most suitable source dataset for a given target task in
transfer learning.

* For any given task there are multiple candidates for the source domain
* Source domain selection aims to find the ideal source domain prior to training
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Source domain selection methods

Knowledge based methods

Field experts manually select
the most relevant source
dataset based on their
understanding of the target task
and the characteristics of the
available datasets.

While effective, knowledge-
based approaches may be
subjective and rely heavily on
the expertise of the domain
experts.

Data-driven methods

These approaches aim to
objectively evaluate the
compatibility between the
source and target domains,
allowing for an automated
selection process based on
empirical evidence rather than
expert judgment alone.

However, since these
approaches rely on quantitative
measures of domain similarity
and task relevance, they can
overlook subtle nuances and
context-specific factors that
experts might consider.

* Training driven selection

/ System Dynamtcs

This method involves training
the model to learn weights for
each source domain during the
training process. In this
method, the model dynamically
adjusts the weights assigned to
different source domains based
on their relevance to the target
task.

While this approach can be
effective, it necessitates
extensive model training.
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Data driven methods

Euclidean distance

* Manhattan distance

* Maximum Mean Discrepancy (MMD)
* CORrelation ALignment (CORAL)

* C(lass-wise Network Parameter Averaging (CNPA)
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Class-wise Network Parameter Averaging (CNPA)

1. Initialize neural network with a fixed set of random
weights.

2. Pass a source sample through the network with a high
learning rate.

3. Record network parameters post backpropagation.
This forms the representation of the source sample.
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4. Reset the network to the same random configuration.

5. Repeatfor all source and target samples

(W11] W11
s,=> Sm— | ¢ ]
| We2 | We2
(W11] W11
ty=> | tn —>I 5 ]
| We2 We2

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer
lay [by

A\

I
il
"é}’\

s
2
<
s

4,
"r
LY
X
/
DY
',"\‘
0
N

<
4

(>

S

%

A\

Za.ﬁ H)ﬁ
an W1j an W61‘ an W12‘
Wa1 = Wyel IWe1 = Weel LlWe1 = We2

M2 ] SIEMENS



Class-wise Network Parameter Averaging (CNPA)

6. Aggregate network parameters for each class and compute the class-wise mean source parameter vectors

Z?:l pi
n
where d and c represent the domain and class of the sample

and p; are the network parameters for a sample from the said domain and class

Pd,c —

7. Calculate the Euclidean distance between the source and target class-wise vector representations to quantify their
dissimilarity

CNPA = \/(Psource,O)Z _ (Ptarget,o)2 + \/(Psource, 1)2 — (Ptarget, 1)2
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Datasets used

« MIMII DG (Machine sound  GTZAN * Vehicle cabin booming noise
dataset for Domain * Blues, Classical, Country, Disco, * Ford Focus
Generalization) Hip-hop, Jazz, Metal, Pop, *  Opel Vectra

* Fan Reggae, and Rock « Ford Mondeo
* Gearbox

* Bearing

« Slide rail

* Valve
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Results

Source Dataset Distance Measures Target Scores
L1 L2 | MMD | CORAL | CNPA | Target AUROC | Target APS

Gearbox 71495 | 54.37 | 0.1104 | 88.33 | 255.0 0.49 0.50

Valve 9520.9 | 69.67 | 0.1918 | 72.36 | 271.2 0.62 0.62 Distance Measure | Correlation coofficient

Fan 10657.8 | 77.44 | 0.2334 | 2468 | 276.6 0.56 0.55 T 0496
Slider 10917.3 | 77.80 | 0.2427 | 8657 | 269.0 0.62 0.61 T3 015
Bearing 122311 | 86.85 | 0.2977 | 113.3 | 2824 0.73 071 - :
GTZAN-03 546063 | 171.0 | 1.034 2920 | 3343 0.74 0.73 MMD -0.337
GTZAN-85 | 260183 | 179.0 | 1.120 | 2478 | 3374 0.62 0.62 CORAL -0.628
GTZAN-72 26372.3 | 181.0 | 1.150 2288 | 336.6 0.65 0.65 CNPA -0.738
Vectra 1331.9 | 15.24 | 0.008019 | 6.814 | 180.2 0.95 0.92

Focus 1469.7 | 16.77 | 0.01072 | 7.531 | 171.9 0.95 0.4

Mondeo 1124.7 | 13.21 | 0.003241 | 6.853 | 119.3 0.99 0.08

: @Meo R SiEMENs



Final remarks

* The proposed approach provides a principled framework for source domain selection by considering not only the
intrinsic disparities between datasets but also their compatibility with the model architecture.

» It gives a combined assessment of domain shift and transferability facilitating appropriate source domain
selection.

» A future application of interest is the transfer from ICE vehicles to electric vehicles as some problems such as
booming (ICE) and whine (EV) bear resemblance from a fault modelling perspective.
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