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Knowledge transfer
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Self-supervised learning

Unlabeled data

Pretext task

Feature

extractor

Downstream 

task

Labeled data

Pros:

- Integrate domain-knowledge

- Downstream task requires less labeled data
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Invariance-based SSL
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Deep metric learning
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Cycle-consistency learning
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Classification loss for cycle-consistency learning

Cross entropy loss

Soft nearest neighbour of ui  in V

logits

predictions

Nearest neighbour of  v in U~

Φ

U

V

V * α

U



Data pre-processing and augmentation

Preprocessing:

Spectrograms

Feature

extractor

Feature

extractor

U

V

Augmentation:

- Random scaling

- Frequency masking

Band-stop filter Band-pass filter
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Threshold computation

z2

𝜇 = (1/𝑛)

𝑖=1

𝑛

min
𝑗≠𝑖

|𝜑 𝒙𝑡𝑟𝑎𝑖𝑛𝒊,𝒲 − 𝜑 𝒙𝑡𝑟𝑎𝑖𝑛𝑗, 𝒲 |

Threshold = 𝜇 + 3 𝜎

mean

Standard deviation

z1

For each embedding in 

the training set, the 

distance from the closest 

embedding in the training 

set is selected, in analogy 

with the selection of the 

closest embedding in the 

training set for each 

embedding in the test set.

𝜎 = 1/(𝑛 − 1)

𝑖=1

𝑛

(min
𝑗≠𝑖

|𝜑 𝒙𝑡𝑟𝑎𝑖𝑛𝒊,𝒲 − 𝜑 𝒙𝑡𝑟𝑎𝑖𝑛𝑗 ,𝒲 | − 𝜇)2
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Anomaly score definition

                     
                     

z1

z2

                                                     

𝜑 ∙,𝒲

z1

z2

                                                     

𝜑 ∙,𝒲

Training set

Test set

𝐴𝑛𝑖= min
𝑋𝑡𝑟𝑎𝑖𝑛

|𝜑 𝒙𝑡𝑟𝑎𝑖𝑛,𝒲 − 𝜑 𝒙𝑡𝑒𝑠𝑡𝒊,𝒲 |
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Training procedure

Raw signals

in training set
STFT

Augmentation
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Threshold computation

Healthy 
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Anomaly scores computation
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IMS dataset

# samples #channels #bearing failing #failure type

Test 1 2187 8 3,4 Inner race, roller element

Test 2 984 4 1 Outer race

Test 3 6324 4 3 Outer race

Run-to-failure experiment:

Test stopped when the accumulation of 

debris on a magnetic plug exceeded a 

certain level.

Fixed speed and load.
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Fault recognition strategy

(1) 50% or more of the distances in the window are above the threshold.

(2) 50% or more of the distances in the window continuously pass the threshold.

(3) The average distance of the data in the window is equal or greater than the threshold. 

If all conditions are satisfied → Fault status

If one or two conditions are satisfied → Alarm status

If one or two of the conditions is satisfied → Healthy status

A moving window on the time history of the computed anomaly scores is considered
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Sensor level results bearing 3 dataset 1
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Sensor level results bearing 4 dataset 1
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Sensor level results bearing 1 dataset 2
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Sensor level results bearing 3 dataset 3
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Machine level results bearing 3 dataset 1
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Machine level results bearing 4 dataset 1
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Machine level results bearing 1 dataset 2
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Machine level results bearing 3 dataset 3
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Conclusion

Mecha(tro)nic System Dynamics

• In this study, a new methodology for early fault detection from vibration signals has been proposed

• A distance metric is enforced with a cycle consistency loss optimization during training

• The results show that the methodology can be applied on a limited amount of training data and that 

allows easily comparison between vibration signal to measure (dis)similarity
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