

A self-supervised learning approach for reliable anomaly detection in rotating machinery

Outline

- Introduction to self-supervised learning
- Cycle consistency learning
- Methodology
- Results
- Conclusion

Knowledge transfer

Self-supervised learning

- Downstream task requires less labeled data

Invariance-based SSL

Mecha(tro)nic System Dynamics

Deep metric learning

Classification loss for cycle-consistency learning

Soft nearest neighbour of uin V

Threshold computation

mean

$$\mu = (1/n) \sum_{i=1}^{n} \min_{j \neq i} |\varphi(\mathbf{x} train_{i}, \mathcal{W}) - \varphi(\mathbf{x} train_{j}, \mathcal{W})|$$

Standard deviation
$$\sigma = \sqrt{\frac{1}{(n-1)\sum_{i=1}^{n} (\min_{j \neq i} |\varphi(\mathbf{x}train_i, \mathcal{W}) - \varphi(\mathbf{x}train_j, \mathcal{W})| - \mu)^2}$$

Threshold = μ + 3 σ

For each embedding in the training set, the distance from the closest embedding in the training set is selected, in analogy with the selection of the closest embedding in the training set for each embedding in the test set.

Training procedure

Threshold computation

Anomaly scores computation

IMS dataset

Run-to-failure experiment: Test stopped when the accumulation of debris on a magnetic plug exceeded a certain level. Fixed speed and load.

	# samples	#channels	#bearing failing	#failure type
Test 1	2187	8	3,4	Inner race, roller element
Test 2	984	4	1	Outer race
Test 3	6324	4	3	Outer race

Fault recognition strategy

A moving window on the time history of the computed anomaly scores is considered

(1) 50% or more of the distances in the window are above the threshold.

(2) 50% or more of the distances in the window continuously pass the threshold.

(3) The average distance of the data in the window is equal or greater than the threshold.

If all conditions are satisfied \rightarrow Fault status If one or two conditions are satisfied \rightarrow Alarm status If one or two of the conditions is satisfied \rightarrow Healthy status

Mecha(tro)nic System Dynamics

Sensor level results bearing 3 dataset 1

Mecha(tro)nic System Dynamics

Sensor level results bearing 4 dataset 1

Sensor level results bearing 1 dataset 2

Sensor level results bearing 3 dataset 3

Machine level results bearing 3 dataset 1

Machine level results bearing 4 dataset 1

KU LEUVEN

Mecha(tro)nic System Dynamics

Machine level results bearing 1 dataset 2

Mecha(tro)nic System Dynamics

Machine level results bearing 3 dataset 3

- In this study, a new methodology for early fault detection from vibration signals has been proposed
- A distance metric is enforced with a cycle consistency loss optimization during training
- The results show that the methodology can be applied on a limited amount of training data and that allows easily comparison between vibration signal to measure (dis)similarity

fabrizio.defabritiis@kuleuven.be

www.mech.kuleuven.be/lmsd

www.mech.kuleuven.be/lmsd-joboffers

Imsd_kuleuven

KU Leuven Mecha(tro)nic System Dynamics (LMSD)

Imsd.kuleuven

Imsd-kuleuven

Imsd_kuleuven

KU Leuven Mecha(tro)nic System Dynamics (LMSD)

