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Condition based maintenance (CBM)

Sensors, transducer, manual entry

I

1. Data acquisition

1. Data acquisition

2. Data manipulation and health index

construction

2.Data Manipulation or
health index construction

3. State detection

4. Health assessment 3.State detection

5. Prognostics

. . ‘ 4, Health assessment
6. Decision Support |

7. Presentation ‘ 5.Prognostics

6.Decision support

7.Presentation
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Data acquisition and data manipulation or health index construction

Raw data is acquired to
monitor the state of

[ system %

The volume of
data

Extracting
features and
use them as
health
indicator

Statistical features
from time or frequency
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Problem formulation

We have collected a lot of signal
(degradation trend).
How can we model these
trends for use in health
assessment and prognostics?

Challenges

* Non-monotonic

* Non-stationary
 Heavy-tailed noise
e Seasonal trend

e Short or long term dependence
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‘gj Wroclaw University Big !ning
of Science and Technology Center

40! {
v' 20 I l | |
L L 0 — - -
60 .80 ’ 100 140 0 = i L
i Acquisition number
Acquisition number

Slow degradation SIRTCEHRe e

Bearing: No. 3 Brng HI: 0.03645 Filtered HI: 0.50420

HiTrend Component Detall Fleet Comparison

Predictior

I
I
I
I
I
I
%
I
|
|
|
|
|
1l
Jd

W stsintenance reant

https://www.linkedin.com/in/ericbechhoefer/

OIRA

w
=3

Health index
Smooth health index
% Crack length (mm) by fractography N\

Healthy /

100 200 300 400 500 600 700
Acquisition number

Y
I

o
S

=

=)

o

o
o

Slow degradation

Non-Gaussian
noise
(impulsive or

heavy tailed

uollepeJa3ap ise4



Non-Gaussian noise

Gaussian noise

Gaussian noise is random variation
with a probability distribution
following a Gaussian (normal)

distribution.
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Non-Gaussian noise

Non-Gaussian noise refers to random
variation that does not follow a Gaussian
(normal) distribution, exhibiting
characteristics such as skewness, heavy
tails, or multimodality
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ldea and methodology

Switching model

4

Slow degradation
stage (degradation
stage)

Healthy stage

Fast degradation
stage (critical stage)

1l =

U

Switching Kalman filter (Dynamic
Bayesian approach )

Advantages Disadvantages
Fast and
low Probabilisti Can not tolerated
computat robabilistic heavy tailed noise
ion cost
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Condition Indicator / Features

Degradation data

1

i i

Transition area betwean Gaussian I
and non-Gaussian distribution H

i i

Changing Scale

i
Internal Dependancy

1
Healthy Stage Degradation Stage w Critical Stage
1

Time

Changing the behavior from one stage to another stage

Heavy- tailed noise |:>

Robust Switching extended
Kalman filter

Switching Extended Kalman
filter (SEKF)

Maximum correntropy
criterion is used to drive
robust SEKF against
heavy tailed noise



Theorem

Classic Extended Kalman
filter

Highly sensitive to
Mean square outliers (heavy
error

tailed noise )

. F, .
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X, = Joa (s 5w, )
Oh
=h(x,.,v,) H. =3 =
Vi =\ XV
Initial Estimate
X And By,
Prediction Time Update

1- Project the State Ahead

X pan= SRy %,,0)
2- Project the error covariance ahead

Feon = FPuF + B.O B/

Observation and Update

1- Compute the Kalman Gain

Ky =Py \I,A(I,AHM \”x" +Rk) .
2- Update Estimate with Measurment z(k)
Xex = Xy + K[V — (F )]
3- Update Error Covariance

P = =K H)E
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Maximum Correntropy
criterion
Given two random variables X, Y € R with joint distribution function

I8 (x, y) correntropy is defined by:
V(X,Y) = E[x(X,Y)]| = [ x(x, y) dFy (x, y)

k(x,y) =G, (€)= exp( 2‘(‘; )

PX,Y) = (%)Z " G, (e(i))

V(X,Y)= Z(Z”(a_‘—lz)'”n!)E[(X _y)en]

Robustness to Non-Gaussian Noise
Better Handling of Non-Stationary Processes
Improved Performance with Heteroscedastic Noise

Maximum Correntropy criterion
extended Kalman filter
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Simulation of Health index
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Synthetic health index
degradation model
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Result for simulated health index
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Detection of the stages in the presence of Gaussian noise,
(a) HI, (b) probability of stages performed by SKF, (c)
probability of stages performed by SMCKF, (d) most

probable stages based on the implementation of SKF, (e)

most probable stages based on the implementation of

SMCKF.

Both the classic
and robust
methods work
well
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Detection of the stages in the presence of non-
Gaussian noise, (a) Hl, (b) probability of stages
by SKF, (c) probability of stages by SMCKF, (d)
most probable stages based on the
implementation of SKF, (e) most probable stages
based on the implementation of SMCKF.

The robust method works
well; however, the
performance of the classic
approach is affected by non-
Gaussian noise

Sensitivity analysis for 100 simulated health
index in presence of different level of non-
Gaussian noise
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Result for real case study

PRONOSTIA (FEMTO) data set Wind turbine data set
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Prediction results for simulated health index

Gaussian noise
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Conclusion

e Maximum correntropy criterion Switching extended Kalman filter is proposed.

e The proposed approach is used to health assessment and predicted RUL

e The method assumes the non-Gaussian distribution and time-varying characteristics of the data.
e Efficiency is verified for simulated data sets.

e Two benchmark real data sets have been used to validate the procedure.
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